Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 541-546    DOI: 10.3724/SP.J.1037.2009.00803
  论文 本期目录 | 过刊浏览 |
高Nb X80管线钢焊接热影响区显微组织与韧性
缪成亮1); 尚成嘉1);  王学敏1);  张龙飞1);  Mani Subramanian2)
1) 北京科技大学材料科学与工程学院; 北京 100083 2) Department of Materials and Engineering; McMaster University; Hamilton; Canada; L8S4M1
MICROSTRUCTURE AND TOUGHNESS OF HAZ IN X80 PIPELINE STEEL WITH HIGH Nb CONTENT
MIAO Chengliang1);  SHANG Chengjia1);  WANG Xuemin1);  ZHANG Longfei1);  Mani Subramanian2)
1) School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 2) Department of Materials and Engineering; McMaster University; Hamilton; Canada; L8S4M1
引用本文:

缪成亮 尚成嘉 王学敏 张龙飞 Mani Subramanian. 高Nb X80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5): 541-546.
, , , , . MICROSTRUCTURE AND TOUGHNESS OF HAZ IN X80 PIPELINE STEEL WITH HIGH Nb CONTENT[J]. Acta Metall Sin, 2010, 46(5): 541-546.

全文: PDF(863 KB)  
摘要: 

利用Gleeble-1500模拟不同热输入的单道次焊接热循环过程, 通过光学显微镜(OM)、扫描电镜(SEM)及电子背散射衍射(EBSD)对高 Nb X80管线钢焊接热影响区中的粗晶区(CGHAZ)显微组织、马/奥组元(M/A)形态和分布以及原奥氏体晶粒粗化情况进行研究. 结果表明: 高Nb X80管线钢的焊接热输入应不高于30 kJ/cm, 虽然在高Nb钢中, 原奥氏体晶粒的平均尺寸不会随热输入增加过于粗大, 但当热输入高于40 kJ/cm时, 会使得原奥氏体晶粒内粒状贝氏体的晶体取向选择过于单一, 大角晶界(≥15o)密度明显降低, 有效晶粒尺寸较大, M/A组元也由于热输入过大而明显粗化. 上述原因使高Nb X80管线钢在大于40 kJ/cm热输入条件下热影响区粗晶区韧性明显恶化.

关键词 高Nb X80管线钢热输入热影响区韧性 马氏体/奥氏体    
Abstract

High Nb-bearing X80 pipeline steel has low cost and excellent combined properties. However, welding will worsen its microstructure and toughness. In this paper, X80 pipeline steel with 0.1%Nb (mass fraction) was chosen, and single welding thermal-cycles with different heat inputs (16, 20, 30, 40, 50, 58 kJ/cm) were simulated by Gleeble-1500 to study the correlation of toughness and microstructure in heat affect zone (HAZ) of actual welding pipe. The evolution characteristics of microstructure of the coarse grain zone in welding heat affect zone (CGHAZ) were investigated by OM, SEM and EBSD. The results indicated heat input in single welding should be less than 30 kJ/cm to ensure good Charpy impact toughness. Although the strong dragging effect of solute Nb can suppress serious coarsening of average grain size in high Nb steel, the uniformity of prior austenite grains is worsened as increasing the heat input. Moreover, the characteristics of high angle boundaries (HABs) and M/A constituents also are influenced by heat input. In the case of low heat put, higher density of HABs, disperse and fine M/A constiuents  were observed, and HABs can form at two sites, one is prior austenite grain boundary, the other is between the lower bainites belong to different Bain groups in the same austenite grain. Otherwise, in the case of high heat input (≥40 kJ/cm), the misorientation between granular bainites in idential austenite grain is small, i.e., the effective grain size is almost the diameter of prior austenite grain, and it will decrease the density of high angle boundary largely, moreover, coarse M/A constituents which are benefit for crack initiation will be generated, consequently, the impact toughness of the coarse grain zone will be worsened obviously in welding heat affect zone.

Key wordshigh Nb-bearing pipeline steel    heat input    heat affect zone (HAZ)    impact toughness    martensite/austenite
收稿日期: 2009-12-01     
基金资助:

国家自然科学基金重点资助项目50734004

作者简介: 缪成亮, 男, 1983年生, 博士生

[1] Feng Y R, Li H L. Pet Plan Eng, 2005; 9: 1
(冯耀荣, 李鹤林. 石油规划设计, 2005; 9: 1)
[2] Zheng L, Fu J Y. Iron Steel, 2006; 41(10): 1
(郑磊, 付俊岩. 钢铁, 2006; 41(10): 1)
[3] Miao C L, Shang C J, Cao J P, Wang X M, He X L. Iron Steel, 2009; 44(3): 62
(缪成亮, 尚成嘉, 曹建平, 王学敏, 贺信莱. 钢铁, 2009; 44(3): 62)

[4] Lee S, Kim B C, Lee D Y. Scr Metall, 1989; 23: 995
[5] Hwang B, Kim Y G, Lee S, Kim Y M, Kim N J, Yoo J Y. Metall Mater Trans, 2005; 36A: 2107
[6] Ohomori Y, Ohtani H, Kunitake T. Metall Sci, 1974; 8: 357
[7] Naylor J P, Krahe P R. Metall Trans, 1974; 5: 1699
[8] Lambert A, Garat X, Sturel T, Gourgues A F, Gingell A. Scr Mater, 2000; 43: 161
[9] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K. Acta Mater, 2006; 54: 435
[10] Chen C X, Li W S, Wang Q P, Feng B, Liu F M, Xue Z K. J Mater Eng, 2005; 5: 22
(陈翠欣, 李午申, 王庆鹏, 冯斌, 刘方明, 薛振奎. 材料工程, 2005; 5: 22)

[11] Li Y, Crowther D N, Green M J W, Mitchell P S, Baker T N. ISIJ Int, 2001; 41: 46
[12] Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet Y. ISIJ Int, 2005; 45: 713
[13] Zhao M C, Shan Y Y, Xiao F R, Li Y H, Yang K. Mater Sci Technol, 2001; 9: 356
(赵明纯, 单以银, 肖福仁, 李玉海, 杨柯. 材料科学与工艺, 2001; 9: 356)

[14] Diazfuentes M, Izamendia A, Gutierrez I. Metall Mater Trans, 2003; 34A: 2005
[15] Guo Z, Lee C S, Morris JW. Acta Mater, 2004; 52: 5511
[16] Morris J W, Lee C S, Guo Z. ISIJ Int, 2003; 43: 410
[17] Tomio Y, Furuhara T, Maki T. Mater Trans, 2009; 50: 2731
[18] Furuhara T, Takayama N, Miyamoto G. Mater Sci Forum, 2010; 638–642: 3044
[19] Koo J Y, Luton M J, Bangaru N V, Petkovic R A. Int J Offshore Polar Eng, 2004; 14: 75
[20] Li W W, Liu Y X, Gao H L, Zhao X W, Feng Y R, Ji L K. Trans China Weld Inst, 2006; 27: 43
(李为卫, 刘亚旭, 高惠临, 赵新伟, 冯耀荣, 吉玲康. 焊接学报, 2006; 27: 43)

[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[3] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[4] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[5] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[6] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[7] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[8] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[9] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[11] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[12] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[14] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[15] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.