Please wait a minute...
金属学报  2010, Vol. 46 Issue (3): 324-328    DOI: 10.3724/SP.J.1037.2009.00781
  论文 本期目录 | 过刊浏览 |
热模锻造+直接时效粉末高温合金的强化机制
宁永权; 姚泽坤; 谢兴华; 郭鸿镇; 谭立军; 陶宇
1) 西北工业大学材料学院; 西安 710072 2) 钢铁研究总院高温材料研究中心; 北京 100081
STRENGTHENING MECHANISM OF POWDER METALLURGY SUPERALLOY BY HOT-DIE FORGING + DIRECT AGING
NING Yongquan; YAO Zekun; XIE Xinghua; GUO Hongzhen; TAN Lijun; TAO Yu
1) School of Materials Science and Engineering; Northwestern Polytechnical University; Xi'an 710072 2) High Temperature Materials Research Institute; Central Iron and Steel Research Institute; Beijing 100081
全文: PDF(914 KB)  
摘要: 

对涡轮盘用镍基粉末高温合金FGH 4096进行了热模锻造+直接时效处理, 探索细化粉末高温合金毛坯组织的工艺及相关增强机制. 结果表明: 在不降低延伸率的前提下, 直接时效处理对于热模锻造后的合金具有明显的强化作用, 并且以多方向变形配合直接时效的强化效果最为显著. 按多方向热模锻造+直接时效工艺, 可使FGH 4096合金的组织显著细化, 平均晶粒尺寸达6 μm, γ'相析出尺寸达80 nm. OM, SEM和TEM观察表明, 除多方向大变形可直接破碎晶粒、细化晶粒外, 反复再结晶也是细化晶粒的有效途径; 同时, 洁净的再结晶晶界完全取代了原始粉末颗粒边界. 直接时效处理后保留了多方向变形产生的位错缠结, 并且获得更为细小的γ'相. 热模锻造+直接时效处理后合金所表现出来的超高强度主要源自于细晶强化、晶界强化、形变强化和γ'相强化的综合作用.

关键词 镍基高温合金粉末高温合金热模锻造+直接时效强化机理    
Abstract

Hot--die forging+direct aging processing was used to improve the microstructure and
mechanical property of P/M superalloy FGH 4096, a kind of materials used in turbine disk, which includes a
solution treatment at 1130 ℃ for 0.5 h, multiaxially forging (total deformation about 100\%) and direct aging at
760 ℃ for 16 h, in addition, drawing (70%) and upseting (40%)+direct aging treatment has also been
invesigated. OM, SEM and TEM were employed to study the microstructure evolution and strengthen
mechanism. It was found that the direct aging treatment has obvious effect on strengthening, especially, for the
multiaxially forged alloy, in which dynamic recrystallization appeared, and the previous particle boundary is
replaced by clean recrystallized boundary and the grain is refined to about 6 μm. After direct aging the average
size of γ'  phase is 80 nm, and the tangled dislocation is still reserved. The strengthening mechanisms
include grain refinement, clean boundary, thermomechanical deformation and γ' phase precipitation.

Key wordsPowder metallurgy superalloy    hot-die forging + direct aging    strengthening mechnism
收稿日期: 2009-11-24     
通讯作者: 姚泽坤     E-mail: ningke521@mail.nwpu.edu.cn
Corresponding author: YAO Zekun     E-mail: ningke521@mail.nwpu.edu.cn
作者简介: 宁永权, 男, 1982年生, 博士生

引用本文:

宁永权 姚泽坤 谢兴华 郭鸿镇 谭立军 陶宇. 热模锻造+直接时效粉末高温合金的强化机制[J]. 金属学报, 2010, 46(3): 324-328.
ZHU Yong-Quan. STRENGTHENING MECHANISM OF POWDER METALLURGY SUPERALLOY BY HOT-DIE FORGING + DIRECT AGING. Acta Metall Sin, 2010, 46(3): 324-328.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2009.00781      或      https://www.ams.org.cn/CN/Y2010/V46/I3/324

[1] Reed R C. The Superalloys Fundamentals and Applications. New York: Cambridge University Press, 2006: 217
[2] Ning Y Q, Yao Z K, Guo H Z, Tao Y, Zhang Y W. Key Eng Mater, 2009; 407–408: 694
[3] Zhao M L, Sun W R, Yang S L, Qi F, Guo S R, Hu Z Q. Acta Metall Sin, 2009; 45: 79
(赵美兰, 孙文儒, 杨树林, 祈 峰, 郭守仁, 胡壮麒. 金属学报, 2009; 45: 79)

[4] Viswanathan G B, Sarosi P M, Henry M F, Whitis D D, Milligan W W, Mills M J. Acta Mater, 2005; 53: 3041
[5] Dunlavy M A, Shivpuri R, Semiatin S L. Mater Sci Eng, 2003; A359: 210
[6] Viswanathan G B, Sarosi P M, Whitis D H, Mills M J. Mater Sci Eng, 2005; A400–401: 489
[7] Liu J T, Liu G Q, Hu B F, Song Y P, Qin Z R, Zhang Y W. J Univ Sci Technol Beijing, 2006; 13: 319
[8] Tian G F, Jia C C, Wen Y, Hu B F. J Univ Sci Technol Beijing, 2008; 15: 729
[9] Liu J T, Liu G Q, Hu B F, Song Y P, Qin Z R, Xiang S, Zhang Y W. Rare Metal Mater Eng, 2006; 35: 418
(刘建涛, 刘国权, 胡本芙, 宋月鹏, 秦子然, 向嵩, 张义文. 稀有金属材料与工程, 2006; 35: 418)

[10] Su ZW, Yao Z K, Guo H Z, Liu J C, Liu J Y, Cui J, Liu G Q, Jiang M, Ying Z Y. Acta Metall Sin, 1996; 32: 377
(苏祖武, 姚泽坤, 郭鸿镇, 刘建超, 刘建宇, 崔健, 刘果青, 姜 明, 应志毅. 金属学报, 1996; 32: 377)

[11] Yao Z K, Guo H Z, Liu J C, Su Z W, Jiang M, Ying Z Y, Liu J Y, Cui J. Chin J Nonfer Met, 2000; 10: 378
(姚泽坤, 郭鸿镇, 刘建超, 苏祖武, 姜明, 应志毅, 刘建宇, 崔健. 中国有色金属学报, 2000; 10: 378)

[12] Barani A A, Ponge D, Raabe D. Mater Sci Eng, 2006; A426: 194
[13] Koyama M, Sawaguchi T, Ogawa K, Kikuchi T, Murakami M. Mater Sci Eng, 2008; A497: 353
[14] KockarB,Karaman I, Kulkarni A, ChumlyakovY,Kireeva I V. J Nuc Mater, 2007; 361: 298
[15] Frenzel J, Pfetzing J, Neuking K, Eggeler G. Mater Sci Eng, 2008; A481–482: 635
[16] Bai B Z, Yang L Y, Zhao Y F. Chin J Rare Met, 2002; 26: 7
(白秉哲, 杨鲁义, 赵耀峰. 稀有金属, 2002; 26: 7)
[17] Chen H M, Hu B F. J Univ Sci Technol Beijing, 2003; 10: 51
[18] Guo W M, Wu J T, Zhang F G, Zhao M H. J Iron Steel Res Int, 2006; 13: 65
[19] Ning Y Q, Yao Z K, Li H, Guo H Z, Tao Y, Zhang Y W. Mater Sci Eng, 2010; A527: 965
[20] Ning Y Q, Yao Z K, Guo H Z, Tao Y, Zhang Y W. Chin J Mech Eng, 2009; 22: 926
[21] Ning Y Q, Yao Z K, Yue T W, Guo H Z, Tao Y, Zhang Y W. Rare Metal Mater Eng, 2009; 38: 1783
(宁永权, 姚泽坤, 岳太文, 郭鸿镇, 陶宇, 张义文. 稀有金属材料与工程, 2009; 38: 1783)

[22] Guo J T. Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 111
(郭建亭. 高温合金材料学(上). 北京: 科学出版社, 2008: 111)
[23] John G, David F. Adv Mater Processes, 2003; 161: 26
[24] Liu Y Y. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2009
(刘莹莹. 西北工业大学博士学位论文, 西安, 2009)

[1] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[2] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[3] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[4] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[5] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[6] 任维鹏, 李青, 黄强, 肖程波, 何利民. 定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变[J]. 金属学报, 2018, 54(4): 566-574.
[7] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[8] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[9] 胡松松,刘林,崔强伟,黄太文,张军,傅恒志. 镍基高温合金定向凝固过程中的汇聚型双晶竞争生长*[J]. 金属学报, 2016, 52(8): 897-904.
[10] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[11] 张义文,胡本芙. 拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响*[J]. 金属学报, 2016, 52(4): 445-454.
[12] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[13] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[14] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
[15] 侯介山,郭建亭,袁超,周兰章. 一种抗热腐蚀铸造镍基高温合金中σ相的析出及回溶*[J]. 金属学报, 2016, 52(2): 168-176.