Please wait a minute...
金属学报  2010, Vol. 46 Issue (3): 294-303    DOI: 10.3724/SP.J.1037.2009.00578
  论文 本期目录 | 过刊浏览 |
考虑炉壁温度变化的高温合金叶片定向凝固过程模拟
潘冬; 许庆彦; 柳百成
清华大学机械工程系先进成形制造教育部重点实验室; 北京 100084
MODELLING ON DIRECTIONAL SOLIDIFICATION OF SUPERALLOY BLADES WITH FURNACE WALL TEMPERATURE EVOLUTION
PAN Dong; XU Qingyan; LIU Baicheng
Key Laboratory for Advanced Materials Processing Technology; MOE; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
引用本文:

潘冬 许庆彦 柳百成. 考虑炉壁温度变化的高温合金叶片定向凝固过程模拟[J]. 金属学报, 2010, 46(3): 294-303.
, , . MODELLING ON DIRECTIONAL SOLIDIFICATION OF SUPERALLOY BLADES WITH FURNACE WALL TEMPERATURE EVOLUTION[J]. Acta Metall Sin, 2010, 46(3): 294-303.

全文: PDF(1607 KB)  
摘要: 

考虑炉壁温度的变化, 基于Monte Carlo射线追踪法建立了高温合金叶片定向凝固过程的温度场计算改进模型. 通过法向射线加密提高加热炉炉壁的辐射计算精度, 并采用叶片三维有限差分网格和加热炉二维网格混合使用的方法提高计算效率. 叶片和炉壁的温度曲线模拟与实验结果吻合良好, 改进模型反映了抽拉过程中炉壁温度的变化及其对叶片内部温度分布的影响, 提高了叶片温度的模拟精度.

关键词 高温合金叶定向凝固炉壁温度模拟    
Abstract

Ni--based superalloy turbine blades produced by Bridgman directional solidification technology are widely used in both aeronautic and energy industries as key parts of the gas turbine engines. Because of existence of complex heat radiation between the shell surface and the furnace wall, precise control of the temperature distribution within the blade is a challenging task. A modified model based on the Monte Carlo ray tracing method was proposed for the three dimensional temperature simulation of the turbine blades during directional solidification process, in which the furnace wall temperature evolution was considered and calculated. Ray refinement in normal direction was applied to improve the heat radiation calculation precision. Three dimensional finite differential grids for turbine blades and two dimensional differential grids for furnace wall were used together to increase simulation efficiency and save memory consumption. Heat transfer calculation of the blades with the modified model was performed and compared with that of the simplified model in which the furnace wall temperature was treated as constant. Experiments were carried out to validate the proposed model in this paper. It was demonstrated that the modified model revealed the furnace wall temperature change during the withdrawal process and its impact on the blade, and simulated the temperature distribution of the turbine blade with a higher accuracy.

Key wordssuperalloy turbine blade    directional solidification    furnace wall temperature    modeling
收稿日期: 2009-09-04     
基金资助:

国家重点基础研究发展计划项目2005CB724105, 国家自然科学基金项目10477010和国家高技术研究发展计划项目2007AA04Z141资助

作者简介: 潘 \ \ \ 冬, 男, 1981年生, 博士生

[1] Perepezko J H. Science, 2009; 326: 1068
[2] Kear B H, Thompson E R. Science, 1980; 208: 847
[3] Li C G, Fu H Z, Yu Q. Aerospace Materials. Beijing: National Defense Industry Press, 2002: 12
(李成功, 傅恒志, 于 翘. 航空航天材料. 北京: 国防工业出版社, 2002: 12)

[4] Roger C R. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 18
[5] Huang Q Y, Li H K. Superalloys. Beijing: Metallurgical Industry Press, 2000: 2
(黄乾尧, 李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 2)
[6] Fu H Z. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 591
(傅恒志. 先进材料定向凝固. 北京: 科学出版社, 2008: 591)

[7] McLean M, Lee P D, Shollock B A. In: Fuchs G, James A W, Gabb T, McLean M, Harada H, eds., Advanced Materials and Processes for Gas Turbines, Copper MT, CO: Warrendale, PA, TMS, 2003: 83
[8] Liu B C. Eng Sci, 2000; 2: 29
(柳百成. 中国工程科学, 2000; 2: 29)
[9] Xiong S M, Xu Q Y, Kang J W. Simulation Technology of Casting Process. Beijing: China Machine Press, 2004: 2
(熊守美, 许庆彦, 康进武. 铸造过程模拟仿真技术. 北京: 机械工业出版社, 2004: 2)

[10] Wang D, Overfelt R A. Proc Conf Computational Modeling of Materials, Minerals and Metals Processing. San Diego, CA, United States: Minerals, Metals and Materials Society, 2001: 461
[11] Liu S Z, Li J R, Tang D Z, Zhong Z G. Mater Eng, 1999; 7: 39
(刘世忠, 李嘉荣, 唐定忠, 钟振纲. 材料工程, 1999; 7: 39)

[12] Yu J, Xu Q Y, Cui K, Liu B C, Kimastsuka A, Kuroki Y, Hirata A. J Mater Sci Technol, 2007; 23: 47
[13] Cui K, Xu Q Y, Yu J, Liu B C, Kimatsuka A, Kuroki Y, Yukoyama F. Acta Metall Sin, 2007; 43: 464
(崔锴, 许庆彦, 于靖, 柳百成, 木间塚明彦, 黑木康德, 横山文彦. 金属学报, 2007; 43: 464)

[14] Yu J, Xu Q Y, Li J R, Yuan H L, Liu S Z, Liu B C. Acta Metall Sin, 2007; 43: 1113
(于靖, 许庆彦, 李嘉荣, 袁海龙, 刘世忠, 柳百成. 金属学报, 2007, 43: 1113)

[15] JiangWH. Heat Transfer. Beijing: High Education Press, 1989: 183
(姜为珩. 传热学. 北京: 高等教育出版社, 1989: 183)

[16] Elliott A J, Karney G B, Gigliotti M F X, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston W, eds., Superalloys 2004, Warrendale, PA, TMS, 2004: 421

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[10] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[12] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[13] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[15] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.