|
|
V分布特性对新型980 MPa级海工特厚板用钢淬透性的影响 |
傅万堂1( ), 王薇1, 任利国1,2, 白兴红1,2, 吕知清1, 李荣斌3, 刘浩楠1, 齐建军4 |
1 燕山大学 亚稳材料全国重点实验室 秦皇岛 066004 2 天津重型装备工程研究有限公司 天津 300399 3 上海电机学院 上海热加工工程技术研究中心 上海 201306 4 河钢集团有限公司 石家庄 050023 |
|
Effect of V Distribution Characteristics on the Hardenability of a Novel 980 MPa Grade Extra-Thick Steel Plate for Marine Engineering |
FU Wantang1( ), WANG Wei1, REN Liguo1,2, BAI Xinghong1,2, LV Zhiqing1, LI Rongbin3, LIU Haonan1, QI Jianjun4 |
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China 2 Tianjin Heavy Equipment Engineering Research Co. Ltd., Tianjin 300399, China 3 Shanghai Engineering Research Center for Hot Manufacturing of Heavy Forgings, Shanghai Dianji University, Shanghai 201306, China 4 HBIS Group Technology Research Institute, Shijiazhuang 050023, China |
引用本文:
傅万堂, 王薇, 任利国, 白兴红, 吕知清, 李荣斌, 刘浩楠, 齐建军. V分布特性对新型980 MPa级海工特厚板用钢淬透性的影响[J]. 金属学报, 2025, 61(9): 1344-1352.
Wantang FU,
Wei WANG,
Liguo REN,
Xinghong BAI,
Zhiqing LV,
Rongbin LI,
Haonan LIU,
Jianjun QI.
Effect of V Distribution Characteristics on the Hardenability of a Novel 980 MPa Grade Extra-Thick Steel Plate for Marine Engineering[J]. Acta Metall Sin, 2025, 61(9): 1344-1352.
[1] |
Xu L Z, Qiao G Y, Gong X, et al. Effect of through-thickness microstructure inhomogeneity on mechanical properties and strain hardening behavior in heavy-wall X70 pipeline steels [J]. J. Mater. Res. Technol., 2023, 25: 4216
|
[2] |
Han J, Li H J, Zhu Z X, et al. Effects of processing optimisation on microstructure, texture, grain boundary and mechanical properties of Fe-17Cr ferritic stainless steel thick plates [J]. Mater. Sci. Eng., 2014, A616: 20
|
[3] |
Zang C Y, Xiao W L, Fu Y, et al. Enhanced properties and homogeneity of Al-Zn-Mg-Cu alloy thick plate by non-isothermal aging [J]. J. Alloys Compd., 2023, 952: 170023
|
[4] |
Zhang L, Shi Y, Hu L, et al. Impact of multi-level microstructures on the strength and yield ratio of extra-thick ultra-high-strength steel [J]. J. Mater. Eng. Perform., 2023, 32: 10344
|
[5] |
Xue H, Peng W J, Yu L, et al. Effect of hardenability on microstructure and property of low alloy abrasion-resistant steel [J]. Mater. Sci. Eng., 2020, A793: 139901
|
[6] |
Nosovi V B, Yurasov S A. Calculation of hardenability of structural steels from their chemical composition [J]. Met. Sci. Heat Treat., 1995, 37: 16
|
[7] |
Grange R A. Estimating the hardenability of carbon steels [J]. Metall. Trans., 1973, 4: 2231
|
[8] |
Brown G T, James B A. Superhardening in medium-carbon steel [J]. Met. Technol., 1980, 7: 261
|
[9] |
Shimotori K, Kawai M, Tokoro H. Effects of Al and Ti on age-hardenability of 40Cr-Ni alloy [J]. J. Jpn. Inst. Met. Mater., 1972, 36: 685
|
[9] |
霜鳥一三, 河合光雄, 野老博和. 40%Cr-Ni合金の時効硬化性におよぼすAlとTiの単独添加の影響 [J]. 日本金属学会誌, 1972, 36: 685
|
[10] |
Cias W W. Phase transformational kinetics and hardenability of low-carbon, boron-treated steels [J]. Metall. Trans., 1973, 4: 603
|
[11] |
Aaron H B, Kotler G R. Second phase dissolution [J]. Metall. Trans., 1971, 2: 393
|
[12] |
Garbarz B, Pickering F B. Relationship between hardness and microstructure of continuously cooled C-Mn-V steels [J]. Mater. Sci. Technol., 1986, 2: 1016
|
[13] |
Pickering F B, Garbarz B. Strengthening in pearlite formed from thermomechanically processed austenite in vanadium steels and implications for toughness [J]. Mater. Sci. Technol., 1989, 5: 227
|
[14] |
Cai Z, Mao X P, Bao S Q, et al. Influence of vanadium microalloying on isothermal transformation behavior of eutectoid steel [J]. Phys. Met. Metall., 2019, 120: 936
|
[15] |
Garbarz B, Pickering F B. Effect of vanadium and austenitising temperature on hardenability of (0.2-0.3)C-1.6Mn steels with and without additions of titanium, aluminium, and molybdenum [J]. Mater. Sci. Technol., 1988, 4: 117
|
[16] |
Lagneborg R, Hutchinson B, Siwecki T, et al. The Role of Vanadium in Microalloyed Steels [M]. Sweden: Swerea KIMAB, 2014: 14
|
[17] |
Wang J L, Song S Q, Xue Z L, et al. Nitride-inclusion characterization in lightweight steel and re-precipitation behavior of AlN during heat treatment: Effect of Al content [J]. J. Iron Steel Res. Int., 2023 30: 350
|
[18] |
Lü C R, Xu L, Shi C, et al. Effect of Al on hardenability and microstructure of 42CrMo bolt steel [J]. Acta Metall. Sin., 2020, 56: 1324
doi: 10.11900/0412.1961.2020.00045
|
[18] |
吕超然, 徐 乐, 史 超 等. Al对42CrMo螺栓钢淬透性及组织的影响 [J]. 金属学报, 2020, 56: 1324
doi: 10.11900/0412.1961.2020.00045
|
[19] |
Guo Y H, Cao L, Wang G C, et al. Precipitation behaviors of AlN inclusion in high-Al steel [J]. Metall. Mater. Trans., 2023, 54B: 275
|
[20] |
Chen C, Zhang F C, Yang Z N, et al. Superhardenability behavior of vanadium in 40CrNiMoV steel [J]. Mater. Des., 2015, 83: 422
|
[21] |
Zhu Z, Chen Q W, Sun S H, et al. Effect of vanadium on superhardenability of 23MnNiMoCr54V steel for round-link chain in mining applications [J]. J. Mater. Eng. Perform., 2021, 30: 3884
doi: 10.1007/s11665-021-05696-2
|
[22] |
Qi J J. Fundamental research on composition design and manufacture process of super heavy link-chain steels for mining [D]. Qin-huangdao: Yanshan University, 2018
|
[22] |
齐建军. 超大直径矿用圆环链钢的成分设计及制备工艺基础研究 [D]. 秦皇岛: 燕山大学, 2018
|
[23] |
Grossman M A. Hardenability calculated from chemical composition [J]. Trans. AIME, 1942, 150: 227
|
[24] |
Garbarz B, Pickering F B. Effect of vanadium and austenitising temperature on hardenability of (0.2-0.3)C-1.6Mn steels with and without additions of titanium, aluminium, and molybdenum [J]. Mater. Sci. Technol., 1988, 4: 117
|
[25] |
Stöferle T, Spur G. Handbuch der Fertigungstechnik [M]. München: Carl Hanser Vlg., 1996: 272
|
[26] |
Vander Voort G F, Lampman S R, Sanders B R, et al. ASM Handbook. Volume 9: Metallography and Microstructures [M]. Materials Park, OH: ASM International, 2004: 1322
|
[27] |
Liščić B, Tensi H M, Luty W. Theory and Technology of Quenching: A Handbook [M]. Berlin, Heidelberg: Springer, 1992: 390
|
[28] |
Jung S, Kim S, Kim S, et al. Quantitative laser-induced breakdown spectroscopy mapping of centerline segregation via optical emissions of Mn and Cr in steel wire rod products [J]. Mater. Today Commun., 2022, 33: 104867
|
[29] |
Li X X, Ramazani A, Prahl U, et al. Quantification of complex-phase steel microstructure by using combined EBSD and EPMA measurements [J]. Mater. Charact., 2018, 142: 179
|
[30] |
Li D L, Cai W Y, Liu Z X, et al. Elemental mapping and quantitative characterization of dendrite structure in IN718 supperalloy based on micro beam X-ray fluorescence and EPMA [J]. Vacuum, 2022, 198: 110859
|
[31] |
Zhang S Y, Wang X, Mo Y T, et al. Towards relieving center segregation in twin-roll cast Al-Mg-Si-Cu strips by controlling the thermal-mechanical process [J]. J. Mater. Sci. Technol., 2023, 148: 31
doi: 10.1016/j.jmst.2022.11.023
|
[32] |
Flori M, Gruzza B, Bideux L, et al. XPS, EPMA and microstructural analysis of a defective industrial plasma-nitrided steel [J]. Surf. Coat. Technol., 2008, 202: 5887
|
[33] |
Mostert R J, Van Rooyen G T. A quantitative assessment of the hardenability increase resulting from a superhardenability treatment [J]. Metall. Trans., 1984, 15A: 2185
|
[34] |
Lin H R, Cheng G H. Hardenability effect of boron on carbon steels [J]. Mater. Sci. Technol., 1987, 3: 855
|
[35] |
Dhara S, Van Bohemen S M C, Santofimia M J. Isothermal decomposition of austenite in presence of martensite in advanced high strength steels: A review [J]. Mater. Today Commun., 2022, 33: 104567
|
[36] |
Lv Z Q, Chen Z Y, Qi J J, et al. Boron-free medium-low nickel high-strength high-hardenability marine steel thick plate and preparation method [P]. Chin Pat, CN114086072A, 2022
|
[36] |
吕知清, 陈振业, 齐建军 等. 无硼中低镍高强度高淬透性海工钢厚板及其制备方法 [P]. 中国专利, CN114086072A, 2022
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|