Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1344-1352    DOI: 10.11900/0412.1961.2024.00010
  研究论文 本期目录 | 过刊浏览 |
V分布特性对新型980 MPa级海工特厚板用钢淬透性的影响
傅万堂1(), 王薇1, 任利国1,2, 白兴红1,2, 吕知清1, 李荣斌3, 刘浩楠1, 齐建军4
1 燕山大学 亚稳材料全国重点实验室 秦皇岛 066004
2 天津重型装备工程研究有限公司 天津 300399
3 上海电机学院 上海热加工工程技术研究中心 上海 201306
4 河钢集团有限公司 石家庄 050023
Effect of V Distribution Characteristics on the Hardenability of a Novel 980 MPa Grade Extra-Thick Steel Plate for Marine Engineering
FU Wantang1(), WANG Wei1, REN Liguo1,2, BAI Xinghong1,2, LV Zhiqing1, LI Rongbin3, LIU Haonan1, QI Jianjun4
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
2 Tianjin Heavy Equipment Engineering Research Co. Ltd., Tianjin 300399, China
3 Shanghai Engineering Research Center for Hot Manufacturing of Heavy Forgings, Shanghai Dianji University, Shanghai 201306, China
4 HBIS Group Technology Research Institute, Shijiazhuang 050023, China
引用本文:

傅万堂, 王薇, 任利国, 白兴红, 吕知清, 李荣斌, 刘浩楠, 齐建军. V分布特性对新型980 MPa级海工特厚板用钢淬透性的影响[J]. 金属学报, 2025, 61(9): 1344-1352.
Wantang FU, Wei WANG, Liguo REN, Xinghong BAI, Zhiqing LV, Rongbin LI, Haonan LIU, Jianjun QI. Effect of V Distribution Characteristics on the Hardenability of a Novel 980 MPa Grade Extra-Thick Steel Plate for Marine Engineering[J]. Acta Metall Sin, 2025, 61(9): 1344-1352.

全文: PDF(2955 KB)   HTML
摘要: 

提高淬透性以使板厚方向组织性能均匀化是海洋工程用高品级特厚钢板生产的技术关键和难点。本工作通过热膨胀和Jominy末端淬火实验,并结合铝固氮处理,研究了V分布状态对一种新型980 MPa级海工特厚板用钢在850和910 ℃奥氏体化后的淬透性及显微组织的影响规律。采用EPMA、SEM和TEM等手段表征了钢的显微组织和V原子的分布特性。结果表明,910 ℃奥氏体化过程中AlN的产生能够促进V原子在原奥氏体晶界上的偏聚,提高过冷奥氏体的稳定性并延缓先共析铁素体的转变,从而有效提高海工钢特厚板的淬透性,使其在更宽的冷速范围(对应于更厚的钢板截面)内组织与性能均匀性更好、强韧性匹配度更高。

关键词 特厚板淬透性V偏聚AlNJominy实验    
Abstract

Improving the hardenability of a ferrous alloy to achieve uniform microstructures and mechanical properties along the direction of the plate thickness is a key challenge in the production of high-grade extra-thick steel plates suitable for marine engineering (hereinafter referred to as “marine steel”). Hence, in this study, the effect of V distribution on the microstructures and hardenability of marine steel was investigated by employing the following procedure: a novel 980 MPa grade extra-thick steel plate was subjected to austenitization at 850 and 910 oC; subsequently, through thermal expansion and Jominy end-quench tests combined with fixed nitrogen treatment with aluminum. The microstructures and state of V atoms in the marine steel sample were characterized using SEM, EPMA, and TEM. Results showed that the occurrence of AlN during austenitizing at 910 oC promoted the segregation of V atoms on the original austenite grain boundaries, improved the stability of undercooled austenite, and delayed the transformation of proeutectoid ferrite. Thus, this study showed that the incorporation of V in marine steel substantially improved the hardenability of marine steel over a wide range of cooling rates (corresponding to steel plates with thicker cross-sections) and facilitated better microstructure uniformity, performance in marine environments, and matching between the required strength and toughness.

Key wordsextra-thick plate    hardenability    V segregation    AlN    Jominy test
收稿日期: 2024-01-15     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(52171050);河北省高端钢铁冶金联合基金项目(E2020203195);上海大件热制造工程技术研究中心开放课题项目(18DZ2253400)
通讯作者: 傅万堂,wtfu@ysu.edu.cn,主要从事先进钢铁材料、大型铸锻件材料与制造技术等方面的研究
Corresponding author: FU Wantang, professor, Tel: 18633525885, E-mail: wtfu@ysu.edu.cn
作者简介: 傅万堂,男,1966年生,教授,博士
图1  在850和910 ℃奥氏体化后实验用钢的Jominy曲线
图2  连续冷却转变(CCT)曲线及显微硬度随冷却速率的变化曲线(910 ℃,30 min)
图3  910和850 ℃奥氏体化后距淬火端不同位置处实验用钢显微组织的OM像
图4  910和850 ℃奥氏体化30 min后实验用钢原始奥氏体晶界形貌的SEM像
图5  实验用钢中AlN和VN析出曲线的Thermo-Calc计算结果
图6  实验用钢经910 ℃奥氏体化30 min后淬火的TEM像及EDS分析结果
图7  实验用钢经850 ℃奥氏体化30 min后淬火的TEM明场像和元素分布面扫图
图8  不同温度奥氏体化30 min后淬火的原奥氏体晶界及对应的V分布EPMA结果
[1] Xu L Z, Qiao G Y, Gong X, et al. Effect of through-thickness microstructure inhomogeneity on mechanical properties and strain hardening behavior in heavy-wall X70 pipeline steels [J]. J. Mater. Res. Technol., 2023, 25: 4216
[2] Han J, Li H J, Zhu Z X, et al. Effects of processing optimisation on microstructure, texture, grain boundary and mechanical properties of Fe-17Cr ferritic stainless steel thick plates [J]. Mater. Sci. Eng., 2014, A616: 20
[3] Zang C Y, Xiao W L, Fu Y, et al. Enhanced properties and homogeneity of Al-Zn-Mg-Cu alloy thick plate by non-isothermal aging [J]. J. Alloys Compd., 2023, 952: 170023
[4] Zhang L, Shi Y, Hu L, et al. Impact of multi-level microstructures on the strength and yield ratio of extra-thick ultra-high-strength steel [J]. J. Mater. Eng. Perform., 2023, 32: 10344
[5] Xue H, Peng W J, Yu L, et al. Effect of hardenability on microstructure and property of low alloy abrasion-resistant steel [J]. Mater. Sci. Eng., 2020, A793: 139901
[6] Nosovi V B, Yurasov S A. Calculation of hardenability of structural steels from their chemical composition [J]. Met. Sci. Heat Treat., 1995, 37: 16
[7] Grange R A. Estimating the hardenability of carbon steels [J]. Metall. Trans., 1973, 4: 2231
[8] Brown G T, James B A. Superhardening in medium-carbon steel [J]. Met. Technol., 1980, 7: 261
[9] Shimotori K, Kawai M, Tokoro H. Effects of Al and Ti on age-hardenability of 40Cr-Ni alloy [J]. J. Jpn. Inst. Met. Mater., 1972, 36: 685
[9] 霜鳥一三, 河合光雄, 野老博和. 40%Cr-Ni合金の時効硬化性におよぼすAlとTiの単独添加の影響 [J]. 日本金属学会誌, 1972, 36: 685
[10] Cias W W. Phase transformational kinetics and hardenability of low-carbon, boron-treated steels [J]. Metall. Trans., 1973, 4: 603
[11] Aaron H B, Kotler G R. Second phase dissolution [J]. Metall. Trans., 1971, 2: 393
[12] Garbarz B, Pickering F B. Relationship between hardness and microstructure of continuously cooled C-Mn-V steels [J]. Mater. Sci. Technol., 1986, 2: 1016
[13] Pickering F B, Garbarz B. Strengthening in pearlite formed from thermomechanically processed austenite in vanadium steels and implications for toughness [J]. Mater. Sci. Technol., 1989, 5: 227
[14] Cai Z, Mao X P, Bao S Q, et al. Influence of vanadium microalloying on isothermal transformation behavior of eutectoid steel [J]. Phys. Met. Metall., 2019, 120: 936
[15] Garbarz B, Pickering F B. Effect of vanadium and austenitising temperature on hardenability of (0.2-0.3)C-1.6Mn steels with and without additions of titanium, aluminium, and molybdenum [J]. Mater. Sci. Technol., 1988, 4: 117
[16] Lagneborg R, Hutchinson B, Siwecki T, et al. The Role of Vanadium in Microalloyed Steels [M]. Sweden: Swerea KIMAB, 2014: 14
[17] Wang J L, Song S Q, Xue Z L, et al. Nitride-inclusion characterization in lightweight steel and re-precipitation behavior of AlN during heat treatment: Effect of Al content [J]. J. Iron Steel Res. Int., 2023 30: 350
[18] Lü C R, Xu L, Shi C, et al. Effect of Al on hardenability and microstructure of 42CrMo bolt steel [J]. Acta Metall. Sin., 2020, 56: 1324
doi: 10.11900/0412.1961.2020.00045
[18] 吕超然, 徐 乐, 史 超 等. Al对42CrMo螺栓钢淬透性及组织的影响 [J]. 金属学报, 2020, 56: 1324
doi: 10.11900/0412.1961.2020.00045
[19] Guo Y H, Cao L, Wang G C, et al. Precipitation behaviors of AlN inclusion in high-Al steel [J]. Metall. Mater. Trans., 2023, 54B: 275
[20] Chen C, Zhang F C, Yang Z N, et al. Superhardenability behavior of vanadium in 40CrNiMoV steel [J]. Mater. Des., 2015, 83: 422
[21] Zhu Z, Chen Q W, Sun S H, et al. Effect of vanadium on superhardenability of 23MnNiMoCr54V steel for round-link chain in mining applications [J]. J. Mater. Eng. Perform., 2021, 30: 3884
doi: 10.1007/s11665-021-05696-2
[22] Qi J J. Fundamental research on composition design and manufacture process of super heavy link-chain steels for mining [D]. Qin-huangdao: Yanshan University, 2018
[22] 齐建军. 超大直径矿用圆环链钢的成分设计及制备工艺基础研究 [D]. 秦皇岛: 燕山大学, 2018
[23] Grossman M A. Hardenability calculated from chemical composition [J]. Trans. AIME, 1942, 150: 227
[24] Garbarz B, Pickering F B. Effect of vanadium and austenitising temperature on hardenability of (0.2-0.3)C-1.6Mn steels with and without additions of titanium, aluminium, and molybdenum [J]. Mater. Sci. Technol., 1988, 4: 117
[25] Stöferle T, Spur G. Handbuch der Fertigungstechnik [M]. München: Carl Hanser Vlg., 1996: 272
[26] Vander Voort G F, Lampman S R, Sanders B R, et al. ASM Handbook. Volume 9: Metallography and Microstructures [M]. Materials Park, OH: ASM International, 2004: 1322
[27] Liščić B, Tensi H M, Luty W. Theory and Technology of Quenching: A Handbook [M]. Berlin, Heidelberg: Springer, 1992: 390
[28] Jung S, Kim S, Kim S, et al. Quantitative laser-induced breakdown spectroscopy mapping of centerline segregation via optical emissions of Mn and Cr in steel wire rod products [J]. Mater. Today Commun., 2022, 33: 104867
[29] Li X X, Ramazani A, Prahl U, et al. Quantification of complex-phase steel microstructure by using combined EBSD and EPMA measurements [J]. Mater. Charact., 2018, 142: 179
[30] Li D L, Cai W Y, Liu Z X, et al. Elemental mapping and quantitative characterization of dendrite structure in IN718 supperalloy based on micro beam X-ray fluorescence and EPMA [J]. Vacuum, 2022, 198: 110859
[31] Zhang S Y, Wang X, Mo Y T, et al. Towards relieving center segregation in twin-roll cast Al-Mg-Si-Cu strips by controlling the thermal-mechanical process [J]. J. Mater. Sci. Technol., 2023, 148: 31
doi: 10.1016/j.jmst.2022.11.023
[32] Flori M, Gruzza B, Bideux L, et al. XPS, EPMA and microstructural analysis of a defective industrial plasma-nitrided steel [J]. Surf. Coat. Technol., 2008, 202: 5887
[33] Mostert R J, Van Rooyen G T. A quantitative assessment of the hardenability increase resulting from a superhardenability treatment [J]. Metall. Trans., 1984, 15A: 2185
[34] Lin H R, Cheng G H. Hardenability effect of boron on carbon steels [J]. Mater. Sci. Technol., 1987, 3: 855
[35] Dhara S, Van Bohemen S M C, Santofimia M J. Isothermal decomposition of austenite in presence of martensite in advanced high strength steels: A review [J]. Mater. Today Commun., 2022, 33: 104567
[36] Lv Z Q, Chen Z Y, Qi J J, et al. Boron-free medium-low nickel high-strength high-hardenability marine steel thick plate and preparation method [P]. Chin Pat, CN114086072A, 2022
[36] 吕知清, 陈振业, 齐建军 等. 无硼中低镍高强度高淬透性海工钢厚板及其制备方法 [P]. 中国专利, CN114086072A, 2022
[1] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[2] 屈小波, 安金敏, 王林, 李喜. 汽车用齿轮钢16MnCrS5热处理变形机理[J]. 金属学报, 2025, 61(4): 597-607.
[3] 苏帅, 韩鹏, 杨善武, 王华, 金耀辉, 尚成嘉. Ni含量对高强度低合金钢淬透性影响的晶体学认识[J]. 金属学报, 2024, 60(6): 789-801.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 吕超然, 徐乐, 史超, 刘进德, 蒋伟斌, 王毛球. Al42CrMo螺栓钢淬透性及组织的影响[J]. 金属学报, 2020, 56(10): 1324-1334.
[6] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[7] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[8] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[9] 潘涛, 王小勇, 苏航, 杨才福. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响*[J]. 金属学报, 2014, 50(4): 431-438.
[10] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294.
[11] 李海庆,宫骏,孙超. NiCrAlY/Al--Al2O3/Ti2AlNb高温抗氧化和力学性能研究[J]. 金属学报, 2012, 48(5): 579-586.
[12] 刘胜胆 李承波 邓运来 张新明. 时效对7055铝合金厚板淬透性的影响[J]. 金属学报, 2012, 48(3): 343-350.
[13] 董瑜亮 闫旭波 赵升升 宫骏 孙超. (Ti, Al)N/Ti2AlN涂层的制备[J]. 金属学报, 2010, 46(6): 743-747.
[14] 杨锐 郝玉琳 Obbard E G 董利民 卢斌. 钛合金中的正交相变及其应用[J]. 金属学报, 2010, 46(11): 1443-1449.
[15] 杨模聪 林鑫 许小静 陈静 黄卫东. 激光立体成形Ti60--Ti2AlNb梯度材料的组织与相演变[J]. 金属学报, 2009, 45(6): 729-736.