Please wait a minute...
金属学报  2010, Vol. 46 Issue (11): 1443-1449    DOI: 10.3724/SP.J.1037.2010.00483
  综述 本期目录 | 过刊浏览 |
钛合金中的正交相变及其应用
杨锐, 郝玉琳, Obbard E G, 董利民,  卢斌
中国科学院金属研究所, 沈阳 110016
ORTHORHOMBIC PHASE TRANSFORMATIONS IN TITANIUM ALLOYS AND THEIR APPLICATIONS
YANG Rui, HAO Yulin, Obbard E G, DONG Limin, LU Bin
引用本文:

杨锐 郝玉琳 Obbard E G 董利民 卢斌. 钛合金中的正交相变及其应用[J]. 金属学报, 2010, 46(11): 1443-1449.
, , , , . ORTHORHOMBIC PHASE TRANSFORMATIONS IN TITANIUM ALLOYS AND THEIR APPLICATIONS[J]. Acta Metall Sin, 2010, 46(11): 1443-1449.

全文: PDF(890 KB)  
摘要: 本文概述了钛合金及Ti3Al经过渡族元素合金化形成的正交相的联系与区别, 简要总结了作者研究组近期针对这些正交相变的研究结果, 分析了需进一步澄清的科学问题. 结合低弹性模量超弹性钛合金研制、冷镦紧固件丝材超细网篮显微组织制备以及Ti2AlNb基合金板材和箔材研发3个实例, 展示了正交相变规律的实际应用.
关键词 β类钛合金应力诱发马氏体相变相稳定性Ti2AlNb    
Abstract:The link and difference between orthorhombic phase transformations in β-type titanium alloys and in Ti3Al containing high concentrations of transition metal elements such as Nb are first outlined in this paper. Recent investigations on these transformations conducted in the authors' group are reviewed followed by discussions of remaining problems. Three examples were presented to illustrate the applications of the orthorhombic phase transformations: design and development of superelastic titanium alloys for biomedical use, preparation of ultra-fine basketweave microstructure of titanium alloy wire for fastener manufacturing, and sheet and foil production of alloys based on Ti2AlNb.
Key wordsβ-type titanium alloy    stress-induced martensitic transformation    phase stability    Ti2AlNb
收稿日期: 2010-09-17     
作者简介: 杨 \ \ 锐, 男, 1965年生, 研究员
[1] Shih C H, Averbach B L, Cohen M. Trans AIME, 1955; 203: 183 [2] Bagariatskii Y A, Nosova G I, Tagunova T V. Dok Akad Nauk SSSR, 1958; 122: 593 [3] Jepson K S, Brown A R G, Gray J A. In: Jaffee R I, Promisel N E, eds., The Science, Technology and Application of Titanium (Proc 1st Int Conf Titanium), London: Pergamon, 1970: 677 [4] Williams J C. In: Jaffee R I, Burte H M, eds., Titanium Science and Technology (Proc 2nd Int Conf Titanium), New York: Plenum, 1973: 1433 [5] Flower H M, Davis R,West D R F. In: Williams J C, Belov A F, eds., Titanium and Titanium Alloys: Scientific and Technological Aspects (Proc 3rd Int Conf Titanium), New York: Plenum, 1982: 1703 [6] Banerjee D, Gogia A K, Nandy T K, Joshi V A. Acta Metall, 1988; 36: 871 [7] Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R. Appl Phys Lett, 2005; 87: 091906 [8] Hao Y L, Li S J, Sun B B, Sui M L, Yang R. Phys Rev Lett, 2007; 98: 216405 [9] Cui J P, Hao Y L, Li S J, Sui M L, Li D X, Yang R. Phys Rev Lett, 2009; 102: 045503 [10] Li S J, Cui T C, Hao Y L, Yang R. Acta Biomater, 2008; 4: 305 [11] Bendersky L A, Roytburd A, Boettinger W J. Acta Metall Mater, 1994; 42: 2323 [12] Obbard E G, Hao Y L, Akahori T, Talling R J, Niinomi M, Dye D, Yang R. Acta Mater, 2010; 58: 3557 [13] Obbard E G. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010 [14] Obbard E G, Hao Y L, Talling R J, Li S J, Zhang Y W, Dye D, Yang R. Acta Mater, in press [15] Gao X, Huang M, Brinson L C. Int J Plast, 2000; 16: 1345 [16] Heinen R, Hackl K, Windl W, Wagner M F. Acta Mater, 2009; 57: 3856 [17] Afonso C R, Ferrandini P L, Ramirez A J, Caram R. Acta Biomater, 2010; 6: 1625 [18] Hao Y L, Li S J, Sun S Y, Yang R. Mater Sci Eng, 2006; A441: 112 [19] Petry W, Heiming A, Trampenau J. Alba M, Herzig C, Schober H R, Vogl G. Phys Rev, 1991; 43B: 10933 [20] Li S J, Yang R, Niinomi M, Hao Y L, Cui Y Y, Guo Z X. Mater Sci Technol, 2005; 21: 678 [21] Hu Q M, Yang R, Xu D S, Hao Y L, Li D. Phys Rev, 2003; 68B: 054102
[1] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[2] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[3] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[4] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[5] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[6] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294.
[7] 李海庆,宫骏,孙超. NiCrAlY/Al--Al2O3/Ti2AlNb高温抗氧化和力学性能研究[J]. 金属学报, 2012, 48(5): 579-586.
[8] 梁海宁 宋晓艳 张哲旭 卢年端 刘雪梅 张久兴. 具有永磁性能的SmCo2纳米晶合金化合物的制备与表征[J]. 金属学报, 2010, 46(8): 973-978.
[9] 赵宇飞 符跃春 胡青苗 杨锐. Ti1-xVx及Ti1-xNbx合金晶格参数、体模量及相稳定性的第一原理研究[J]. 金属学报, 2009, 45(9): 1042-1048.
[10] 杨模聪 林鑫 许小静 陈静 黄卫东. 激光立体成形Ti60--Ti2AlNb梯度材料的组织与相演变[J]. 金属学报, 2009, 45(6): 729-736.
[11] 林成新; 谷南驹; 刘庆锁; 温春生; 赵连城 . Fe-Mn-Si形状记忆合金低温松弛机理[J]. 金属学报, 2002, 38(8): 825-828 .
[12] 饶光斌; 王俭秋; 韩恩厚; 柯伟 . 应力诱发马氏体相变对TiNi形状记忆合金疲劳过程影响的原位实验观察[J]. 金属学报, 2002, 38(6): 575-582 .
[13] 张济山;崔华;胡壮麒;村田纯教;森永正彦;汤川夏夫. 应用d—电子合金设计理论发展新型抗热腐蚀单晶镍基高温合金 Ⅰ.相稳定性临界条件的确定[J]. 金属学报, 1993, 29(7): 5-12.
[14] 丛家瑞;范鹤立;曹兴言;李隆盛;曹月君;徐香秋. 奥氏体-贝氏体球墨铸铁中奥氏体对接触疲劳性能的影响[J]. 金属学报, 1992, 28(7): 41-44.
[15] 谭树松;徐惠彬. Ti-51at.-%Ni全方位记忆效应的一种解释[J]. 金属学报, 1990, 26(1): 76-79.