金属学报, 2025, 61(5): 717-730 DOI: 10.11900/0412.1961.2023.00295

研究论文

TC4钛合金跨相区连续热压缩 α 相组织演变规律及织构形成机理

赵焯雅, 孟令健, 林鹏,, 曹晓卿,

太原理工大学 材料科学与工程学院 太原 030024

Microstructure Evolution and Texture Formation Mechanism of α Phase During Continuous Through-Transus Thermal Compression of TC4 Titanium Alloy

ZHAO Zhuoya, MENG Lingjian, LIN Peng,, CAO Xiaoqing,

College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

通讯作者: 曹晓卿,caoxiaoqing@tyut.edu.cn,主要从事轻合金塑性加工研究;林 鹏,linpeng@tyut.edu.cn,主要从事金属高性能特种塑性成型研究

责任编辑: 梁烨

收稿日期: 2023-07-07   修回日期: 2023-12-29  

基金资助: 国家自然科学基金项目(52305403)

Corresponding authors: CAO Xiaoqing, professor, Tel: 18634300096, E-mail:caoxiaoqing@tyut.edu.cn;LIN Peng, professor, Tel:(0351)6010021, E-mail:linpeng@tyut.edu.cn

Received: 2023-07-07   Revised: 2023-12-29  

Fund supported: National Natural Science Foundation of China(52305403)

作者简介 About authors

赵焯雅,女,1998年生,硕士

摘要

为探究TC4钛合金在不同热压缩变形条件下的微观组织演变及织构形成机理,进而达到调控织构和弱化“宏区”的目的,本工作通过热压缩实验、OM、EBSD及高温β相组织重构技术研究了TC4钛合金在α + β相区、β相区以及跨相区连续热压缩后α相微观组织及织构的演变规律。结果表明,试样在α + β相区压缩后主要由等轴α相组成,变形时{101¯0}<112¯0>柱面滑移系开动导致α相首先转动至{112¯0}//FD取向(FD为压缩方向);随形变量和形变速率增加,α晶粒逐渐转动至{101¯0}//FD取向。在β相区保温或压缩后的冷却过程中主要形成具有{101¯0}//FD相变织构的片层α相;在β相区施加30%的变形后β晶粒转动至001//FD取向,β001//FD织构的增强促进了冷却过程中α相{101¯0}//FD相变织构的形成;随β相区形变量和形变速率增加,动态再结晶被促进,β晶粒尺寸减小,相变生成的片层α相晶粒尺寸也明显减小,且晶粒取向分散,因此α相{101¯0}//FD织构强度也相应降低。在跨相区连续热压缩后主要形成{101¯0}//FD织构,柱面滑移对织构的形成起主要作用。当试样以0.01 s-1的形变速率分别在β相区和α + β相区压缩30%时,相变析出的α晶粒首先转动至{112¯0}//FD取向,因此抑制了{101¯0}//FD织构的形成;而随着α + β相区形变量增加,晶粒取向进一步转向{101¯0}//FD取向,因此{101¯0}//FD织构强度增加;对于在β相区保温(未变形)后降温至α + β相区以0.01 s-1的形变速率压缩60%的试样,其α相动态析出过程中的变体选择较弱,且α + β相区较大的形变量在一定程度上促进了α相的动态再结晶,因此其具有最弱的α相{101¯0}//FD织构;当形变速率为0.05 s-1时,较大的形变量会导致α相发生动态再结晶,同样达到弱化{101¯0}//FD织构的效果。因此,采用跨相区连续热压缩工艺可以获得弱织构片层组织的钛合金。随后对试样在室温(约20 ℃)下进行了力学性能测试,在1020 ℃、5 min (未变形) + 920 ℃、60%、0.01 s-1条件下变形的试样整体织构最弱,且α相晶粒尺寸较小,抵抗裂纹萌生和扩展的能力较强,因此具有最高的延伸率。

关键词: TC4钛合金; 跨相区连续热压缩; 织构演变; 柱面滑移系

Abstract

Titanium alloy has emerged as the preferred structural material in the aerospace and marine industries because of its exceptional strength-to-weight ratio, corrosion resistance, and fatigue resistance. The primary application of titanium alloy in aerospace is evident in aeroengines, emphasizing the importance of developing lightweight, high-performance components to enhance engine reliability. Despite these advantages, challenges arise during hot processing because the alloy forms a strong texture, resulting in anisotropic mechanical properties. In addition, the formation of “macrozones”, areas with similar grain orientations during hot processing, further complicates matters by facilitating stress concentration during hot deformation, thereby increasing the likelihood of crack nucleation. Rapid crack propagation within “macrozones” reduces the service life of titanium alloy components, necessitating a thorough investigation of the formation mechanism and control methods for “macrozones”. This study delves into the microstructure evolution and texture formation of TC4 titanium alloy under various hot compression conditions, aiming to elucidate the role of weakening texture and “macrozone”. The microstructure and texture evolution of the α phase after α + β phase field, β phase field, and continuous through-transus thermal compression were examined in TC4 alloy through thermal compression tests, optical microscopy, electron backscatter diffraction, and reconstruction of the high-temperature β phase. The results indicate that specimens primarily comprised equiaxed α phase after compression in the α + β phase field. The activation of {101¯0}<112¯0> prismatic slip systems caused α phase rotation toward {112¯0}//forging direction (FD) orientation during deformation. With increased deformation and strain rate, α grains gradually rotated to {101¯0}//FD orientation. Cooling after holding or compression in the β phase field resulted in the development of lamellar α phase with a {101¯0}//FD texture. In the β phase field, 30% compression induced β grain rotation to 001//FD orientation, enhancing β phase001//FD texture and promoting the formation of α phase{101¯0}//FD transformation texture during cooling. Increased deformation and strain rate facilitated dynamic recrystallization of the β phase, reducing β grain size, weakening α phase {101¯0}//FD texture, and refining α grain size. After continuous through-transus thermal compression, the dominant {101¯0}//FD texture formation occurred because of prismatic slip system activation. Under specific conditions, such as 30% compression in the β phase field and 30% compression in the α + β phase field at 0.01 s-1, inhibition of {101¯0}//FD texture formation was observed as α grains rotated to {112¯0}//FD orientation during dynamic precipitation. Increased deformation in the α + β phase field led to further rotation of α grains to {101¯0}//FD orientation, intensifying {101¯0}//FD texture. Conversely, holding in the β phase field (undeformed), then cooled to the α + β phase field and compressed at 0.01-1 to a 60% reduction resulted in weak variant selection during dynamic precipitation of α phase, with large deformation promoting dynamic recrystallization of α phase and yielding the weakest α phase {101¯0}//FD texture. And at a strain rate of 0.05 s-1, extensive deformation promoting dynamic recrystallization of α phase, and weakening {101¯0}//FD texture. Continuous through-transus thermal compression was identified as a method for obtaining lamellar-structured titanium alloys with weak texture. Subsequent mechanical property testing at room temperature (around 20 oC) revealed that the through-transus thermal compressed specimen at 1020 oC, 5 min (undeformed) + 920 oC, 60%, and 0.01 s-1 exhibited the weakest {101¯0}//FD texture intensity and the smallest grain size of α phase. This specimen demonstrated strong crack initiation and propagation resistance, resulting in the highest elongation.

Keywords: TC4 titanium alloy; continuous through-transus thermal compression; texture evolution; prismatic slip system

PDF (5031KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵焯雅, 孟令健, 林鹏, 曹晓卿. TC4钛合金跨相区连续热压缩 α 相组织演变规律及织构形成机理[J]. 金属学报, 2025, 61(5): 717-730 DOI:10.11900/0412.1961.2023.00295

ZHAO Zhuoya, MENG Lingjian, LIN Peng, CAO Xiaoqing. Microstructure Evolution and Texture Formation Mechanism of α Phase During Continuous Through-Transus Thermal Compression of TC4 Titanium Alloy[J]. Acta Metallurgica Sinica, 2025, 61(5): 717-730 DOI:10.11900/0412.1961.2023.00295

钛合金具有比强度高、耐腐蚀性能优异、高温性能好、生物相容性好等优点,被广泛应用在航空航天、汽车、海洋、医疗等领域[1,2]。其中,TC4钛合金(Ti-6Al-4V)是一种典型的α + β双相钛合金,具有良好的力学性能和加工性能[3,4]。钛合金的力学性能与其微观组织及织构密切相关,例如αβ相的形貌、相比例、晶粒取向、晶粒尺寸、织构强度等,而钛合金的成形工艺及工艺参数会直接决定其微观组织的变化。钛合金在高温塑性成形的过程中易形成α相织构,甚至“宏区”[5]。这是由于在βα的相变过程中,β相和α相严格遵循Burgers取向关系,即(0001) α //{110} β 、<112¯0> α //<111> β,理论上每一种取向的β晶粒可以等概率生成12种不同取向的α变体,获得相对随机的α织构。然而在实际变形过程中,某些取向的α变体会优先生成,即发生变体选择现象,导致某些强织构的形成,进而引起力学性能的各向异性[6]。此外,强织构的形成还会引起裂纹在“宏区”中萌生和快速扩展,进而导致某些加载方向的疲劳和蠕变等力学性能急剧下降[7,8]。因此,研究钛合金在不同加工条件下的织构演化规律对提高钛合金的力学性能具有重要意义。

目前,关于β相区或α + β相区热变形对钛合金α相织构演变影响的研究已有很多。李东宽等[9]α + β相区对双态组织TC4钛合金进行热压缩实验,发现随着变形温度的升高,组织中等轴α相减少,片状α相增加;随着形变速率和形变量的增加,α相晶粒内位错密度和畸变能增大,促进动态再结晶的发生及晶粒尺寸的减小。Zheng等[10]研究了具有等轴组织和随机织构的Ti6242S钛合金棒材在α + β相区热压缩过程中的织构演变,发现随形变量的增加,柱面滑移系被激活,初生α相(αp)晶粒在应力作用下发生弯曲、旋转,同时在动态回复或动态再结晶的作用下发生晶粒细化;在所有变形条件下,在热压缩过程中主要形成了平行于压缩方向的<112¯0>和<202¯3>织构。<112¯0>织构的形成主要归因于柱面滑移系的开动和与αp取向相同的次生α相(αs)晶粒的析出,而<202¯3>织构的形成则可能与变形中的动态再结晶或板条αs相的变形有关。李成铭等[11]研究了TA15钛合金在β相区分别以0.01和1 s-1的形变速率变形60%后的微观组织和织构演变,发现在相变温度以上压缩并水冷时,发生马氏体相变并形成针状马氏体α',随形变速率增加,原始β晶界被破坏,晶粒内的α片层变短,α集束尺寸减小,显微组织由片层组织转变为网篮组织;低应变速率下变形、冷却后晶粒取向集中,主要形成平行于法向(ND)的<202¯3>织构和由<101¯0>向<0001>偏转的织构,而随应变速率增加,<112¯0>织构消失,主要形成<0001>织构,且其强度明显增加。

综上,钛合金在高温塑性成形的过程中易形成α相织构。此外,热加工前的β织构会对α相织构的形成产生较大的影响。当相邻的β晶粒具有相同或相近的<110>晶向时,c轴平行于<110> β 方向的α变体将优先在β/β晶界的两侧析出[12,13]。同时,β晶界平面的倾斜度也会对α变体选择产生影响,即所形成的α变体的主要低能界面与β晶界平面具有最小角度差[14]。Leo Prakash等[15]研究发现,β相织构和变体选择共同决定热轧及热处理过程中α相织构及“宏区”的产生。αp晶粒的取向与βα相变中产生变体的取向相对应,且因为片层αs相在αp晶粒上形核,αs的织构也基本遵循αp织构的取向。此外,β相织构强度同样影响后续α相织构的形成。Zhao等[16]指出,β相(110)织构强度直接影响相变过程中的α相织构的形成,具有强(110) β 织构的合金中相邻β晶粒具有相近<110>晶向的概率增大,进而加剧了相变过程中的变体选择,导致强α相织构的形成。β晶粒尺寸也会影响钛合金α相织构和“宏区”的形成,Obasi等[17]发现,随着晶粒尺寸增加,Euler角为{90°, 30°, 0°}的α织构强度逐渐增加;在晶粒尺寸更大的β晶粒中,变体选择更强,且具有共同<110>取向的相邻β晶粒,在其晶界两侧形核的α板条优先形成,促进强织构的形成。研究[18]发现,可以通过跨相区连续热压缩变形的方法调控β相晶粒取向并抑制后续α + β两相区变形过程中α相织构的形成。然而,目前对钛合金热变形过程中组织和织构演变的研究主要集中在α + β两相区或β单相区热变形,工艺参数对跨相区连续热压缩变形过程中α相织构的作用规律尚不明晰。

本工作以TC4钛合金为研究对象,通过热压缩实验、光学显微镜(OM)和电子背散射衍射(EBSD)技术研究了TC4钛合金在α + β相区、β相区以及跨相区连续热压缩实验中α相组织和织构的演变规律,分析了形变量、形变速率等变形参数对α相织构演变的作用机理,进而为钛合金高温塑性成形α相织构的调控提供了一种可行的思路。

1 实验方法

实验材料为挤压态TC4钛合金,其具体成分为Ti-6.36Al-4.15V-0.30Fe-0.10C-0.05N (质量分数,%),合金相变温度约为990 ℃。在配备有电加热炉的DNS200电子万能试验机上沿试样轴向(AD)进行热压缩实验,圆柱体试样尺寸为直径8 mm、长12 mm (用于微观组织分析)和直径40 mm、长60 mm (用于力学性能测试)。试样的变形参数及路线分别如表1图1所示。α + β相区热压缩变形工艺路线为:将试样从室温(约20 ℃)升温至920 ℃后保温5 min,随后分别以0.01和0.05 s-1的形变速率压缩30%和60% (图1a)。β相区保温或热压缩变形的工艺路线为:将试样从室温升温至1020 ℃后保温5 min,不变形或分别以0.01和0.05 s-1的形变速率压缩30%和60% (图1b)。跨相区连续热压缩变形工艺路线为:将试样从室温升温至1020 ℃后保温5 min,不变形或分别以0.01和0.05 s-1的形变速率压缩30%,随后降温至920 ℃,不经过保温直接以相同形变速率压缩30%和60% (图1c)。所有试样变形完成后均空冷(AC)至室温。变形后用DK7735电火花线切割机将试样沿压缩方向(FD)切开,如图2a所示,经标准金相程序研磨、抛光后,使用3 mL HF + 1 mL HNO3 + 7 mL H2O溶液对样品表面进行腐蚀,采用DM2700M 型OM对试样径向(RD)和FD平面进行微观组织观察。采用配有EBSD系统的TESCAN-8000G扫描电子显微镜(SEM)对试样RD-FD面进行EBSD表征,加速电压为20 kV,扫描区域为950 μm × 700 μm,扫描步长为1.8 μm。通过HKL CHANNEL 5软件对EBSD数据进行分析。通过MATLAB软件及MTEX开源工具[19],基于室温下的α相晶粒取向分布图实现高温β相晶粒取向的重建。

表1   TC4钛合金在不同相区内的变形参数

Table 1  Deformation parameters of TC4 titanium alloys in different phase fields

Sample No.ProcessDeformation parameter
1α + β phase field compression920 oC, 30%, 0.01 s-1
2920 oC, 30%, 0.05 s-1
3920 oC, 60%, 0.01 s-1
4920 oC, 60%, 0.05 s-1
5β phase field holding or compression1020 oC, 5 min (undeformed)
61020 oC, 30%, 0.01 s-1
71020 oC, 60%, 0.01 s-1
81020 oC, 30%, 0.05 s-1
9Continuous through-transus compression1020 oC, 30%, 0.01 s-1 + 920 oC, 30%, 0.01 s-1
101020 oC, 30%, 0.05 s-1 + 920 oC, 30%, 0.05 s-1
111020 oC, 30%, 0.01 s-1 + 920 oC, 60%, 0.01 s-1
121020 oC, 30%, 0.05 s-1 + 920 oC, 60%, 0.05 s-1
131020 oC, 5 min (undeformed) + 920 oC, 60%, 0.01 s-1

新窗口打开| 下载CSV


图1

图1   TC4钛合金热压缩加工路线示意图

Fig.1   Schematics of TC4 titanium alloy thermal compression processes (AC—air cooling)

(a) α + β phase field compression

(b) β phase field holding or compression

(c) continuous through-transus compression


图2

图2   TC4钛合金试样和室温拉伸试样示意图

Fig.2   Schematics of sampling position (a) and tensile specimen size (b) of TC4 titanium alloy at room temperature (AD—axial direction, FD—forging direction, TD—transverse direction, RD—radial direction; unit: mm; 990 oC is the (α + β)/β transformation temperature)


在试样RD-FD截面上沿RD方向加工出如图2b所示的室温拉伸试样,室温拉伸实验在UTM4304微机控制电子万能试验机上按照GB/T 228.1—2010进行。

2 实验结果

2.1 合金初始微观组织

TC4钛合金原材料的OM像和α相的EBSD取向图分别如图3ab所示。可见,α相晶粒呈等轴状均匀分布,平均晶粒尺寸为12 μm。图3cd分别为TC4钛合金原材料的极图和反极图。由图可知,原材料具有平行于棒材轴向分布的0001初始织构,织构强度较弱(为1.77)。

图3

图3   原始TC4钛合金的OM像,α相的EBSD取向图、极图和反极图

Fig.3   OM image (a), EBSD orientation map (b), pole figure (PF) (c), and inverse pole figure (IPF) (d) of α phase in as-received TC4 titanium alloy


2.2 α+ β 相区压缩变形组织和织构演变

图4为TC4钛合金试样在α + β相区压缩后α相的EBSD取向图、极图和反极图。由图可见,空冷后试样主要由等轴α相晶粒组成,与原始组织(图3b)相比,在α + β相区压缩变形后,试样中的α相晶粒尺寸明显减小。这是因为随形变量和形变速率增加,晶粒内位错密度和畸变能增加,晶粒在外力作用下发生晶格旋转、晶粒破碎,同时促进了α相晶粒动态再结晶的发生[9,20]

图4

图4   TC4钛合金在α + β相区压缩后α相的EBSD取向图、极图和反极图

Fig.4   EBSD orientation maps, PFs, and IPFs of α phase in TC4 titanium alloys compressed in α + β phase field

(a) sample No.1 (b) sample No.2 (c) sample No.3 (d) sample No.4


当试样以0.01 s-1速率压缩30%时(No.1试样),晶粒的{0001}晶面法向集中在横向(TD)附近,形成{112¯0}//FD织构,强度为1.80 (图4a)。随形变速率增加至0.05 s-1 (No.2试样),晶粒取向分散,{112¯0}//FD织构强度减弱,为1.52,同时组织中还形成了强度较大的{101¯0}//FD织构,为1.73 (图4b)。而当试样以0.01 s-1速率压缩60%时(No.3试样),试样主要形成{101¯0}//FD织构,织构强度为1.85 (图4c);随形变速率增加至0.05 s-1 (No.4试样),{101¯0}//FD织构强度增加,为2.16,同时{112¯0}//FD织构强度随形变速率增加而略微增加(图4d)。

试样经过不同条件压缩实验后形成的形变织构在强度上有所差别,而形变织构的形成与不同滑移系的开动情况有关。图5为TC4钛合金在α + β相区压缩后α相{0001}<112¯0>基面滑移系、{101¯0}<112¯0>柱面滑移系和{101¯1}<112¯0>锥面滑移系的Schmid因子(SF)分布图。滑移系的SF越大,说明作用在此滑移系上的分切应力越大,滑移系更容易开动。由图5可知,不同条件变形下,试样基面滑移系的平均SF在0.28左右,因此基面滑移系不易开动。这是由于原始TC4钛合金试样具有较弱的{0001}//FD织构,该取向晶粒的{0001}基面垂直于压缩方向,基面滑移系的SF较小[21]。柱面和锥面滑移系的平均SF较高且相近,分别在0.37和0.41左右。在钛合金中,柱面滑移系有较低的临界分切应力,锥面滑移系具有较高的临界分切应力[22],故在α + β相区压缩变形时,柱面滑移对形变织构的形成起主要作用。如图4a所示,试样以0.01 s-1压缩30%时(No.1试样)主要形成{112¯0}//FD织构,随形变量和形变速率增加,织构逐渐转向{101¯0}//FD取向。这就是由于随着α相{101¯0}<112¯0>柱面滑移系的开动,在变形开始时,大部分晶粒在外力作用下旋转至{112¯0}//FD取向,形成{112¯0}//FD织构;随形变量和形变速率增加,晶粒进一步转动使{101¯0}晶面转动至与压缩轴垂直,最终形成{101¯0}//FD织构。

图5

图5   TC4钛合金在α + β相区压缩后α相的{0001}<112¯0>基面滑移系、{101¯0}<112¯0>柱面滑移系和{101¯1}<112¯0>锥面滑移系的Schmid因子(SF)分布图

Fig.5   Schmid factor (SF) distributions of {0001}<112¯0> basal slip system, {101¯0}<112¯0> prismatic slip system, and {101¯1}<112¯0> pyramidal slip system of α phase in TC4 titanium alloys compressed in α + β phase field

(a) sample No.1 (b) sample No.2 (c) sample No.3 (d) sample No.4


2.3 β 相区压缩变形组织和织构演变

图6为TC4钛合金在β相区保温或压缩后α相的EBSD取向图、极图和反极图。在β相变点以上温度保温时β晶粒很容易长大,在随后的冷却过程中,α相优先在β晶界上形核并向β晶粒内生长,形成相互交叉的针状α相,即网篮组织[23,24]。在β相区未经处理变形(仅保温5 min)的试样(No.5试样)主要由细片层α相组成,α相晶粒取向非常集中,主要形成平行于压缩方向的{101¯0}织构和由{112¯0}向{0001}偏转的α相变织构,织构强度分别为2.66和3.42 (图6a)。在β相区以0.01 s-1压缩30%时(No.6试样),片层α晶粒宽度增加,长度方向尺寸减小,α相晶粒取向逐渐分散,但{101¯0}和由{112¯0}向0001偏转的织构强度明显增加,分别为5.28和5.83 (图6b)。随形变量增加至60% (No.7试样),片层α相晶粒尺寸明显减小,晶粒取向更加分散,{101¯0}和由{112¯0}向{0001}偏转的织构强度相比No.6试样降低,为2.93和3.32 (图6c)。在β相区以0.05 s-1压缩30%时(No.8试样),晶粒变形程度更加明显,晶粒取向分散,{101¯0}和由{112¯0}向{0001}偏转的织构强度相比No.6试样大幅降低,为2.83和2.04 (图6d),但{101¯0}//FD相变织构仍强于未变形的试样(No.5试样),说明β相区的热压缩变形促进了冷却过程中α相变织构的形成。

图6

图6   TC4钛合金在β相区保温或压缩后α相的EBSD取向图、极图和反极图

Fig.6   EBSD orientation maps, PFs, and IPFs of α phase in TC4 titanium alloys held or compressed in β phase field

(a) sample No.5 (b) sample No.6 (c) sample No.7 (d) sample No.8


由于冷却过程中βα的相变遵循Burgers取向关系,通过MATLAB软件和MTEX开源工具包根据相变后α相的取向重建高温β晶粒的取向,其结果如图7所示。由图可见,β晶粒呈等轴状或带状,晶粒尺寸较大,在原始β晶界处发现部分再结晶晶粒。在β相区保温未变形的试样(No.5试样),其β晶粒尺寸较大且呈等轴状(图7a)。在β相区经过压缩变形后,原始β晶粒沿压缩方向被压扁且晶粒尺寸减小,β晶界清晰完整,在外力的作用下发生弯折,是钛合金β热变形的典型显微组织特征[25] (图7b)。随着形变量增加至60% (No.7试样),β晶粒晶界处存在较多的等轴状动态再结晶晶粒,晶粒尺寸明显减小(图7c)。试样以0.05 s-1压缩30%时(No.8试样),β晶粒被压扁呈条带状,出现动态再结晶晶粒,晶粒尺寸相比No.6试样明显减小(图7d)。

图7

图7   TC4钛合金在β相区保温或压缩后β相的EBSD取向图

Fig.7   EBSD orientation maps of β phase in TC4 titanium alloys held or compressed in β phase field

(a) sample No.5 (b) sample No.6 (c) sample No.7 (d) sample No.8


为了进一步揭示强织构及“宏区”产生的原因,图8给出了图6中方框位置Ⅰ和Ⅱ的α“宏区”形貌、{0001}极图和相邻β晶粒的{110}极图。如图8ab极图中圆圈标记位置所示,相邻β晶粒具有一个相近{110}取向,在该晶界上析出的α相{0001}极图中具有平行于该{110}取向的极点,说明发生了变体选择。正如Bhattacharyya等[13]指出,当相邻β晶粒有相同或相近{110}取向时,c轴平行于{110}方向的α变体将优先在β/β晶界的两侧析出,导致 α相织构的形成。

图8

图8   图6中方框位置I和II的α“宏区”EBSD取向图、{0001}极图和相邻β晶粒的{110}极图

Fig.8   EBSD orientation maps and {0001} PFs of α-“macrozones” and {110} PFs of adjacent β grains in the areas I (a) and II (b) in Figs.6b and d


2.4 跨相区连续热压缩变形组织和织构演变

图9为TC4钛合金在跨相区连续热压缩后α相的EBSD取向图、极图和反极图。在β相区压缩变形时,β晶粒被压扁且晶粒尺寸减小,在随后冷却至α + β相区并继续压缩的过程中,α相动态析出,即α晶粒的析出和变形过程同时发生。由图9可见,试样主要由板条α相组成,且随形变速率和α + β相区形变量增加,晶粒变形明显,α相晶粒明显细化。

图9

图9   TC4钛合金跨相区连续热压缩后α相的EBSD取向图、极图和反极图

Fig.9   EBSD orientation maps, PFs, and IPFs of α phase in TC4 titanium alloys after through-transus thermal compression

(a) sample No.9 (b) sample No.10 (c) sample No.11 (d) sample No.12 (e) sample No.13


试样以0.01 s-1的形变速率分别在β相区和α + β相区压缩30%时(No.9试样),α相晶粒取向分散,{101¯0}//FD织构强度较弱,为2.71 (图9a)。随着形变速率增加至0.05 s-1 (No.10试样),{101¯0}//FD织构强度相比No.9试样明显增加,为5.62 (图9b)。试样以0.01 s-1的形变速率分别在β相区和α + β相区压缩30%、60%时(No.11试样),α相晶粒尺寸明显减小,{101¯0}//FD织构强度相比No.9试样增加,为3.87 (图9c)。随形变速率增加至0.05 s-1 (No.12试样),{101¯0}//FD织构强度相比No.11试样轻微增加,为4.27 (图9d)。在β相区保温后未变形直接降温至α + β相区以0.01 s-1压缩60%的试样(No.13试样),其α相晶粒尺寸减小且取向分散,{101¯0}//FD织构强度最小,为1.76 (图9e)。

图10为TC4钛合金跨相区连续热压缩后α相{0001}<112¯0>基面滑移系、{101¯0}<112¯0>柱面滑移系和{101¯1}<112¯0>锥面滑移系的SF分布图。由图可知,所有试样的基面滑移系均表现出较低的平均SF,在0.26左右,而柱面滑移系和锥面滑移系的SF相对较高,且差值不大。又因具有层状组织的钛合金在高温变形过程中,片层α相旋转和晶格转动导致柱面滑移系SF增加,柱面滑移更容易被激活[26,27]。因此,柱面滑移系的开动对跨相区连续热压缩试样形变织构的产生和变化起主要作用。

图10

图10   TC4钛合金跨相区连续热压缩后α相{0001}<112¯0>基面滑移系、{101¯0}<112¯0>柱面滑移系和{101¯1}<112¯0>锥面滑移系的SF分布图

Fig.10   SF distributions of {0001}<112¯0> basal slip system,{101¯0}<112¯0> prismatic slip system, and {101¯1}<112¯0> pyramidal slip system of α phase in TC4 titanium alloys after through-transus thermal compression

(a) sample No.9 (b) sample No.10 (c) sample No.11

(d) sample No.12 (e) sample No.13


结合α + β相区变形产生的形变织构,对于跨相区连续热压缩变形试样,试样在从β相区冷却至α + β相区时,{101¯0}//FD相变织构先形成,在随后的变形过程中α相的柱面滑移系开动,使部分α晶粒转至{112¯0}//FD取向,削弱了{101¯0}//FD织构强度。而随着α + β相区形变量和形变速率的增加,变形晶粒逐渐转向{101¯0}//FD取向,使{101¯0}//FD织构强度增加。

2.5 室温力学性能

在实际生产过程中,通常采用β锻造的方法以获得具有良好断裂韧性的片层组织钛合金,而传统的β相区热变形易导致合金强{101¯0}α织构的形成和力学性能的下降。由以上结果可知,不同热压缩工艺得到的TC4钛合金的微观组织及织构强度存在一定差异。与传统β相区热压缩相比,跨相区连续热压缩在某些变形条件下能够在保持片层组织形貌不变的前提下抑制α相{101¯0}织构的形成,获得晶粒取向均匀分布的α相组织。为探究TC4钛合金组织织构与力学性能之间的关系,本工作选取了形变速率和总形变量相同(0.01 s-1和60%),但热压缩工艺不同的3个试样进行室温拉伸性能测试,分别为传统β相区热压缩的No.7试样和织构强度较弱的跨相区连续热压缩试样No.9和No.13。结果如表2所示。由表可知,3组样品的抗拉强度相近,延伸率有所区别。仅在β相区变形的试样(No.7试样),其抗拉强度和延伸率均处于中等水平。对于跨相区连续热压缩变形的试样,No.9试样的抗拉强度增加,而延伸率降低;No.13试样的抗拉强度最低,而延伸率最高。

表2   TC4钛合金在不同热压缩工艺下以0.01 s-1形变速率总压缩60%后的室温拉伸性能

Table 2  Tension properties of TC4 titanium alloy at room temperature after compression under different processing methods with a total compression of 60% at 0.01 s-1

Sample No.Tensile strength / MPaElongation / %
7933.414.9
9938.813.6
13926.616.0

新窗口打开| 下载CSV


3 分析与讨论

由以上结果可知,α + β相区热压缩、β相区热压缩以及跨相区连续热压缩后的TC4钛合金的组织和织构存在一定的差异。其中,α + β相区热压缩后的试样由于未经历αβ相转变,其微观组织与合金初始组织相似,由等轴α相组成。在α + β相区变形时,α相滑移系的开动引起α晶粒转动,此外在应力作用下条状α晶粒破碎并发生再结晶,转变为细小的等轴α晶粒。由SF分布图(图5)可知,{101¯0}<112¯0>柱面滑移系为主要开动的滑移系。柱面滑移系的开动导致α晶粒首先转动至{112¯0}//FD取向,随着形变量和形变速率增加,α晶粒进一步转动至{101¯0}//FD取向,即滑移面逐渐转动至垂直于外力方向,导致α相{101¯0}//FD织构强度增加。

β相区热压缩的试样在冷却过程中发生βα相变,α相从β基体中析出形成片层组织,并形成平行于压缩方向的{101¯0}和由{112¯0}向{0001}偏转的α相变织构。β相区热压缩30%时,β晶粒在应力作用下转动至{001}//FD取向[28],且未发生动态再结晶,β相{001}//FD织构的增强促进了后续冷却过程中α相{101¯0}//FD相变织构的形成。图11揭示了β相晶粒取向对α相{101¯0}//FD相变织构强度的影响。对于靠近{001}//FD取向的β晶粒(图11a),α相发生明显变体选择,主要形成平行于压缩方向的α相{101¯0}和由{112¯0}向{0001}偏转的相变织构;对于偏离{001}//FD取向的β晶粒(图11b),其内部析出多种取向的α相变体,α相{101¯0}//FD织构强度降低。因此,β相区热压缩所引起的β相{001}//FD织构是产生α相变体选择和强相变织构的原因。当β相区压缩60%时,β相产生明显的动态再结晶,β晶粒尺寸减小(图7c),因此导致相变过程中析出的片层α相晶粒尺寸减小。正如Obasi等[17]提出,在原始β晶界两侧生长的α变体优先形核并在β晶粒内长大,此时β晶粒内基本没有其他取向的α变体析出,这种特定α变体的生长主要受β晶粒尺寸的限制,即随β晶粒尺寸增大,该α变体在粗大β晶粒内明显长大,成为主要的织构成分,变体选择明显增强。因此,较小的β晶粒尺寸抑制了相变过程中α相变体选择的产生,最终导致α相{101¯0}//FD相变织构强度的降低。

图11

图11   图6中方框位置I和II中不同取向β晶粒的重构取向图和{001}极图、相应区域内α晶粒取向图、{0001}极图和反极图

Fig.11   Orientation maps and {001} PFs of β grains with different orientations (a, b); and orientation maps, {0001} PFs, and IPFs of α grains (c, d) in the areas I (a, c) and Ⅱ (b, d) in Figs.6b and d


综上,β相区热压缩易导致α相{101¯0}//FD相变织构的形成,虽然可以通过提高形变量和形变速率的方法引入再结晶晶粒,进而弱化α织构,但该方法对变形参数和设备都有较高的要求。与β相区热压缩相比,跨相区连续热压缩能够在相同形变量和形变速率的前提下获得具有弱α相{101¯0}//FD织构的片层组织。这是由于在β相区保温或变形后降温至α + β相区发生变形时,α相动态析出,即在相变析出的同时产生晶粒转动,因此相变织构被弱化。例如,以0.01 s-1的形变速率分别在β相区和α + β相区压缩30%的试样(No.9试样),在α + β相区变形时{101¯0}<112¯0>柱面滑移系起主要作用(图10),柱面滑移系的开动使析出的α晶粒向{112¯0}//FD取向旋转,因此导致{101¯0}//FD相变织构强度与No.6试样相比降低;随α + β相区形变量增加至60% (No.11试样),α相晶粒进一步旋转至{101¯0}//FD取向,因此导致{101¯0}//FD织构强度轻微增加。即使如此,No.11试样的整体织构强度仍弱于No.6试样,说明在低形变速率下跨相区连续热压缩可以达到弱化{101¯0}//FD织构的效果。以0.05 s-1的形变速率分别在β相区和α + β相区变形30%时 (No.10试样),较大的形变速率使流动应力增加,促进了α晶粒向{101¯0}//FD取向的转动,因此{101¯0}//FD织构强度大于No.9试样;当α + β相区形变量增加至60%时(No.12试样),{101¯0}//FD织构强度相比No.10试样降低。这是由于试样在β相区压缩变形时晶粒内位错密度和畸变能增加,随后在α + β相区以较大形变速率压缩60%时,α相的动态再结晶被促进[29],随机取向的再结晶晶粒削弱了{101¯0}//FD织构。

跨相区连续热压缩工艺可以明显弱化α织构,这是由于β相区压缩导致β相晶粒向001//FD取向转动,进而促进了α + β相区压缩过程中α相{101¯0}<112¯0>柱面滑移系的开动。为了阐明β晶粒取向对α相动态析出过程中柱面滑移系开动的影响,图12所示为No.13试样中不同取向β晶粒的重构取向图、{001}极图和相应区域α晶粒取向图、柱面滑移系SF分布图和反极图。由图可见,对于取向靠近{001}//FD的β晶粒I,α相柱面滑移系的平均SF为0.36,且α晶粒的取向较为集中,织构强度较低(图12ac)。而对于取向偏离001//FD的β晶粒Ⅱ,α相柱面滑移系的平均SF为0.34,且α相的织构强度更高(图12bd)。以上结果说明,β晶粒向{001}//FD取向的转动可以促进α相动态析出过程中{101¯0}<112¯0>柱面滑移系的开动。因此,No.11试样中α相{101¯0}<112¯0>柱面滑移系的平均SF值相比No.13试样的更高(图10ce),柱面滑移系的开动被促进。

图12

图12   图9区域I和II中不同取向β晶粒的重构取向图和001极图、相应区域α晶粒取向图、反极图和{101¯0}<112¯0>柱面滑移系的SF图

Fig.12   Orientation map and {001} PFs of β grains with different orientations (a, b); and orientation maps, IPFs and SF maps of {101¯0}<112¯0> prismatic slip system of α grains (c, d) in the areas I (a, c) and Ⅱ (b, d) in Fig.9e


跨相区连续热压缩的No.13试样与No.7、No.9试样相比具有最高的延伸率,这是α相织构强度和晶粒形貌共同决定的。

对于传统的β相区热压缩(No.7试样),β相{001}//FD织构的增强促进了后续冷却过程中α相的变体选择,导致了较强α织构的形成。对于跨相区连续热压缩的No.9试样,虽然其在β相区30%的变形导致了β晶粒向{001}//FD取向转动,但同样促进了α + β相区变形时α相柱面滑移系开动,导致α相{101¯0}//FD相变织构强度的降低。对于跨相区连续热压缩的No.13试样,其在β相区仅保温5 min,并未形成较强的β相{001}//FD织构,在随后的动态析出过程中变体选择较弱;此外,α + β相区较大的形变量在一定程度上促进了α相的动态再结晶。因此,No.13试样具有最弱的α相{101¯0}//FD织构,且晶粒取向分散,不容易形成取向聚集的“宏区”,其抵抗裂纹萌生和扩展的能力较强[30]

除织构强度的影响外,α相晶粒形貌及晶粒尺寸也会对试样力学性能产生一定的影响。No.13试样在较低温度下变形了60%,流动应力较大,因此其组织的变形程度最大,β相晶粒被严重压扁,片层α晶粒尺寸最为细小。No.9试样{101¯0}织构强度略低于No.7试样,分别为2.71和2.93,No.7试样由β相区冷却至室温时主要形成晶粒更为细小的网篮组织,其抵抗裂纹扩展能力较No.9试样更强[31],因此延伸率相对No.9更大。No.9试样在从β相区降温至α + β相区并进行变形的过程中α相晶粒析出并发生长大,且α + β相区的变形促进了α相的析出,因此α相晶粒尺寸较大、延伸率最低。综上,与传统的β相区热变形相比,采用跨相区连续热压缩工艺在某些变形条件下可以获得织构强度更低的片层组织钛合金,提高TC4钛合金的延伸率。

4 结论

(1) TC4钛合金在α + β相区热压缩后主要由等轴α相组成,变形中{101¯0}<112¯0>柱面滑移系的开动引起α相晶粒转动,同时条状α晶粒在应力作用下破碎并发生再结晶。柱面滑移系的开动导致α晶粒首先转动至{112¯0}//FD取向,随形变量和形变速率增加,α晶粒进一步转向{101¯0}//FD取向。

(2) 在β相区热压缩的试样在冷却过程中发生βα相变,主要形成{101¯0}//FD相变织构。β相区压缩使β晶粒转动至001//FD取向,001//FD织构的增强促进了冷却过程中{101¯0}//FD相变织构的形成。随形变量增加,产生明显动态再结晶,β晶粒尺寸减小,抑制了相变过程中变体选择的产生,导致{101¯0}//FD相变织构强度降低。

(3) 对于跨相区连续热压缩变形的试样,β相区压缩导致β晶粒向{001}//FD取向转动,进而促进了压缩过程中α + β相区中α相{101¯0}<112¯0>柱面滑移系的开动,α晶粒的转动弱化了相变织构。试样以0.01 s-1的形变速率分别在β相区和α + β相区压缩30%时,α相{101¯0}<112¯0>柱面滑移系开动使析出的α晶粒转动至{112¯0}//FD取向,导致{101¯0}//FD织构强度降低;随着α + β相区形变量增加至60%,α晶粒进一步转动至{101¯0}//FD取向,导致{101¯0}//FD织构强度轻微增加,但整体织构强度仍弱于只在β相区变形30%的试样,说明低形变速率条件下跨相区连续热压缩可以达到弱化{101¯0}//FD织构的效果。在β相区保温(未变形)后降温至α + β相区以0.01 s-1的形变速率压缩60%的试样,α相动态析出过程中的变体选择较弱,且α + β相区较大的形变量在一定程度上促进了α相的动态再结晶,因此其具有最弱的α相{101¯0}//FD织构。试样以0.05 s-1的形变速率分别在β相区和α + β相区压缩30%时,较大的形变速率使流动应力增加,促进了晶粒向{101¯0}//FD取向的转动,因此{101¯0}//FD织构强度增加;随α + β相区形变量增加,组织中位错密度和畸变能增加,促进动态再结晶的发生,弱化了{101¯0}//FD织构。因此,采用跨相区连续热压缩工艺可以获得弱织构片层组织的钛合金。

(4) 以不同条件进行热压缩变形后,TC4钛合金的室温抗拉强度相近,而延伸率有所区别。以1020 ℃、5 min (未变形) + 920 ℃、60%、0.01 s-1条件变形的试样具有最高的延伸率,这是因为该试样组织的变形程度最大,板条α晶粒尺寸较小、取向分散,{101¯0}//FD织构强度低,不容易形成取向聚集的“宏区”,抵抗裂纹萌生和扩展的能力较强。

参考文献

Wang F, Cui W C.

Experimental investigation on dwell-fatigue property of Ti-6Al-4V ELI used in deep-sea manned cabin

[J]. Mater. Sci. Eng., 2015, A642: 136

[本文引用: 1]

Boyer R R.

An overview on the use of titanium in the aerospace industry

[J]. Mater. Sci. Eng., 1996, A213: 103

[本文引用: 1]

Zhao Y Q, Ge P, Xin S W.

Progresses of R&D on Ti-alloy materials in recent 5 years

[J]. Mater. China, 2020, 39: 527

[本文引用: 1]

赵永庆, 葛 鹏, 辛社伟.

近五年钛合金材料研发进展

[J]. 中国材料进展, 2020, 39: 527

[本文引用: 1]

Gao P F, Fu M W, Zhan M, et al.

Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A Review

[J]. J. Mater. Sci. Technol., 2020, 39: 56

DOI      [本文引用: 1]

Titanium alloys have been widely used in many industrial clusters such as automotive, aerospace and biomedical industries due to their excellent comprehensive properties. In order to obtain fine microstructures and favorable properties, a well-designed multi-step thermomechanical processing (TMP) is critically needed in manufacturing of titanium components. In making of titanium components, subtransus processing is a critical step to breakdown lamellar microstructure to fine-structure in hot working process and thus plays a key role in tailoring the final microstructure and properties. To realize this goal, huge efforts have been made to investigate the mechanisms of microstructure evolution and flow behavior during the subtransus processing. This paper reviews the recent experimental and modelling progresses, which aim to provide some guidelines for the process design and microstructure tailoring for titanium alloy research community. The characteristics of the initial lamellar microstructure are presented, followed by the discussion on microstructure evolution during subtransus processing. The globularization of lamellar α is analyzed in detail from three aspects, i.e., globularization mechanism, heterogeneity and kinetics. The typical features of flow behaviors and the explanations of significant flow softening are then summarized. The recent advances in modelling of microstructure evolution and flow behaviors in the subtransus processing are also articulated. The current tantalized issues and challenges in understanding of the microstructure evolution and flow behaviors of the titanium alloys with lamellar microstructure are presented and specified in future exploration of them.

Gao X X, Zeng W D, Ma H Y, et al.

The origin of coarse macrograin during thermo-mechanical processing in a high temperature titanium alloy

[J]. J. Alloys Compd., 2019, 775: 589

[本文引用: 1]

Deng Y T, Li S Q, Huang X.

Anisotropy of mechanical properties of β processed TC17 titanium Alloy

[J]. Chin. J. Rare Met., 2018, 42: 885

[本文引用: 1]

邓雨亭, 李四清, 黄 旭.

β锻TC17钛合金力学性能各向异性研究

[J]. 稀有金属, 2018, 42: 885

[本文引用: 1]

Bantounas I, Dye D, Lindley T C.

The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V

[J]. Acta Mater., 2009, 57: 3584

[本文引用: 1]

Suárez Fernández D, Wynne B P, Crawforth P, et al.

The effect of forging texture and machining parameters on the fatigue performance of titanium alloy disc components

[J]. Int. J. Fatigue, 2021, 142: 105949

[本文引用: 1]

Li D K, Guo Y, Yang L X, et al.

Thermal deformation behavior and microstructure of TC4 titanium alloy in two-phase region

[J]. Foundry Technol., 2022, 43: 114

[本文引用: 2]

李东宽, 郭 岩, 杨立新 .

TC4钛合金两相区的热变形行为及微观组织

[J]. 铸造技术, 2022, 43: 114

[本文引用: 2]

Zheng G M, Mao X N, Tang B, et al.

Evolution of microstructure and texture of a near α titanium alloy during forging bar into disk

[J]. J. Alloys Compd., 2020, 831: 154750

[本文引用: 1]

Li C M, Li P, Zhao M, et al.

Microstructures and textures of TA15 titanium alloy after hot deformation

[J]. Chin. J. Nonferrous Met., 2014, 24: 91

[本文引用: 1]

李成铭, 李 萍, 赵 蒙 .

TA15钛合金的热变形微观组织与织构

[J]. 中国有色金属学报, 2014, 24: 91

[本文引用: 1]

Stanford N, Bate P S.

Crystallographic variant selection in Ti-6Al-4V

[J]. Acta Mater., 2004, 52: 5215

[本文引用: 1]

Bhattacharyya D, Viswanathan G B, Denkenberger R, et al.

The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy

[J]. Acta Mater., 2003, 51: 4679

[本文引用: 2]

Shi R, Dixit V, Viswanathan G B, et al.

Experimental assessment of variant selection rules for grain boundary α in titanium alloys

[J]. Acta Mater., 2016, 102: 197

[本文引用: 1]

Leo Prakash D G, Honniball P, Rugg D, et al.

The effect of β phase on microstructure and texture evolution during thermomechanical processing of α + β Ti alloy

[J]. Acta Mater., 2013, 61: 3200

[本文引用: 1]

Zhao Z B, Wang Q J, Hu Q M, et al.

Effect of β 110 texture intensity on α-variant selection and microstructure morphology during β/α phase transformation in near α titanium alloy

[J]. Acta Mater., 2017, 126: 372

[本文引用: 1]

Obasi G C, Birosca S, Quinta da Fonseca J, et al.

Effect of β grain growth on variant selection and texture memory effect during αβα phase transformation in Ti-6Al-4V

[J]. Acta Mater., 2012, 60: 1048

[本文引用: 2]

Meng L, Kitashima T, Tsuchiyama T, et al.

β-texture evolution during α precipitation in the two-step forging process of a near-β titanium alloy

[J]. Metall. Mater. Trans., 2020, 51A: 5912

[本文引用: 1]

Bachmann F, Hielscher R, Schaeben H.

Texture analysis with MTEX—Free and open source software toolbox

[J]. Solid State Phenom., 2010, 160: 63

[本文引用: 1]

X C, Zhao W G, Yuan M R, et al.

Hot deformation behavior and microstructure evolution of TC11 titanium alloy

[J]. Heat Treat Met., 2023, 48: 279

DOI      [本文引用: 1]

Deformation behavior and microstructure evolution of the TC11 titanium alloy at high temperatures were investigated. The results show that the flow stress of the alloy decreases as the deformation temperature increases and the strain rate decreases during deformation, and the degree of softening of the flow stress increases as the strain rate increases. By analysis of the processing map at true strain of 0.6, the highest energy dissipation rate is found at 940 ℃ and 0.001 s<sup>-1</sup> and reaching 0.71. The plastic instability zone is found in the range of 920-930 ℃ and 0.9-10 s<sup>-1</sup>. The dynamic recrystallization of the α-phase during hot deformation of the TC11 titanium alloy is promoted by increase of the strain rate, the deformation volume and the deformation temperature.

吕学春, 赵文革, 袁明荣 .

TC11钛合金热变形行为及微观组织演变

[J]. 金属热处理, 2023, 48: 279

DOI      [本文引用: 1]

研究了TC11钛合金在高温下的变形行为以及显微组织变化。结果表明,在变形过程中,合金的流动应力随着变形温度的升高以及应变速率的降低而降低;同时合金的流动应力软化程度随着应变速率的升高而增加。通过真应变为0.6的热加工图分析可知,能量耗散率最高出现在940℃,0.001 s<sup>-1</sup>的条件下,达到0.71;塑性失稳区出现在920~930℃、0.9~10 s<sup>-1</sup>的变形工艺参数范围。TC11钛合金在热变形过程中,应变速率的增加、变形量的增加以及变形温度的升高都有利于促进α相的动态再结晶。

Chen Z H, Xia W J, Cheng Y Q, et al.

Texture and anisotropy in magnesium alloys

[J]. Chin. J. Nonferrous Met., 2005, 15: 1

[本文引用: 1]

陈振华, 夏伟军, 程永奇 .

镁合金织构与各向异性

[J]. 中国有色金属学报, 2005, 15: 1

[本文引用: 1]

Salem A A, Semiatin S L.

Anisotropy of the hot plastic deformation of Ti-6Al-4V single-colony samples

[J]. Mater. Sci. Eng., 2009, A508: 114

[本文引用: 1]

Zhang Z, Wang Q J, Mo W. Titanium Metallurgy and Heat Treatment [M]. Beijing: Metallurgical Industry Press, 2009: 7

[本文引用: 1]

张 翥王群骄莫 畏. 钛的金属学和热处理 [M]. 北京: 冶金工业出版社2009: 7

[本文引用: 1]

Aeby-Gautier E, Bruneseaux F, Da Costa Teixeira J, et al.

Microstructural formation in Ti Alloys: In-situ characterization of phase transformation kinetics

[J]. JOM, 2007, 59(1): 54

[本文引用: 1]

Yao P P, Li P, Li C M, et al.

Hot deformation behavior and microstructure of TA15 titanium alloy in β field

[J]. Chin. J. Rare Met., 2015, 39: 967

[本文引用: 1]

姚彭彭, 李 萍, 李成铭 .

TA15钛合金β热变形行为及显微组织

[J]. 稀有金属, 2015, 39: 967

[本文引用: 1]

Li N, Zhao Z B, Zhu S X, et al.

Analysis of the active slip mode during compression of the near-α titanium alloy in the α + β phase-field: Insights from the results of electron backscattered diffraction

[J]. Mater. Lett., 2021, 288: 129363

[本文引用: 1]

Lunt D, Thomas R, Atkinson M D, et al.

Understanding the role of local texture variation on slip activity in a two-phase titanium alloy

[J]. Acta Mater., 2021, 216: 117111

[本文引用: 1]

Le Corre S, Forestier R, Brisset F, et al.

Influence of β-forging on texture development in Ti 6246 alloy

[A]. Proceedings of the 13th World Conference on Titanium [M]. San Diego: John Wiley & Sons, Inc., 2016: 757

[本文引用: 1]

Zhang D, Dong X J, Xu Y, et al.

Dynamic recrystallization mechanism of Ti-6554 alloy during high-temperature deformation

[J]. J. Alloys Compd., 2023, 959: 170534

[本文引用: 1]

Whittaker M T, Evans W J, Lancaster R, et al.

The effect of microstructure and texture on mechanical properties of Ti6-4

[J]. Int. J. Fatigue, 2009, 31: 2022

[本文引用: 1]

Lütjering G.

Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys

[J]. Mater. Sci. Eng., 1998, A243: 32

[本文引用: 1]

/