Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 757-769    DOI: 10.11900/0412.1961.2023.00153
  研究论文 本期目录 | 过刊浏览 |
先进镍基粉末高温合金FGH4108在不同应力条件下的蠕变行为
李新宇1,2,3, 白佳铭1,2,3, 张浩鹏2,3, 李晓鲲2,3, 贾建2,3, 刘常升1, 刘建涛2,3(), 张义文2,3()
1 东北大学 材料科学与工程学院 沈阳 110819
2 钢铁研究总院 高温材料研究所 北京 100081
3 北京钢研高纳科技股份有限公司 北京 100081
Creep Behavior of Advanced Powder Metallurgy Nickel-Based Superalloys FGH4108 Under Different Stress Conditions
LI Xinyu1,2,3, BAI Jiaming1,2,3, ZHANG Haopeng2,3, LI Xiaokun2,3, JIA Jian2,3, LIU Changsheng1, LIU Jiantao2,3(), ZHANG Yiwen2,3()
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
3 Gaona Aero Material Co. Ltd., Beijing 100081, China
引用本文:

李新宇, 白佳铭, 张浩鹏, 李晓鲲, 贾建, 刘常升, 刘建涛, 张义文. 先进镍基粉末高温合金FGH4108在不同应力条件下的蠕变行为[J]. 金属学报, 2025, 61(5): 757-769.
Xinyu LI, Jiaming BAI, Haopeng ZHANG, Xiaokun LI, Jian JIA, Changsheng LIU, Jiantao LIU, Yiwen ZHANG. Creep Behavior of Advanced Powder Metallurgy Nickel-Based Superalloys FGH4108 Under Different Stress Conditions[J]. Acta Metall Sin, 2025, 61(5): 757-769.

全文: PDF(5575 KB)   HTML
摘要: 

为深入了解双组织结构的FGH4108合金的蠕变特性,通过2种不同晶粒尺寸组织研究了合金在700 ℃不同应力下的蠕变行为。利用SEM和TEM研究不同应力下2种晶粒组织的蠕变变形机制和断裂模式,分析应力对蠕变变形和断裂的影响。结果表明,在700 ℃条件下,粗晶组织在780 MPa蠕变应力下的变形组织主要为孤立层错和微孪晶,随着应力提升至900 MPa,主要的变形组织转变为扩展层错和微孪晶;对于细晶组织,在780~900 MPa蠕变应力范围内主要的变形组织为扩展层错和微孪晶。在2种尺寸的晶粒组织中,晶界对最小蠕变速率的促进作用随着加载应力的增加而降低。分析表明,合金的高应力敏感性是导致应力增加后在变形过程中容易产生孪生的原因。另外,随着蠕变应力增加,粗晶组织的沿晶断裂倾向减小,而对于细晶组织则反之。

关键词 粉末高温合金蠕变断裂应力层错微孪晶    
Abstract

Turbine discs, manufactured using powder metallurgy nickel-based superalloys, serve as critical hot-end components in aviation engines. Considering that the disc rim and hub has to function under different temperatures and stresses, their dual microstructure had been paid close attention. In this study, the coarse- and fine-grained microstructures were obtained by controlling the solution treatment temperature, and the creep behavior of the superalloy at 700 oC and under various stresses was investigated. The effect of stress on the creep deformation mechanism and fracture behavior of the alloy was investigated via SEM and TEM. In the coarse-grained microstructure, the creep deformation mechanism at 780 MPa was primarily isolated by stacking faults and microtwin shearing, while the stress increased to 900 MPa, the extended stacking fault shearing and microtwinning jointly dominated creep deformation. Nevertheless, within the stress range of 780-900 MPa, the creep deformation mechanism remained consistent in the fine-grained structure, which was characterized by the coexistence of extended stacking fault shearing and microtwinning. In addition, this study indicated that the grain boundaries exhibited a diminishing promotion effect on the minimum creep rate as the applied stress increased for both grain microstructures. The high stress sensitivity of the experimental alloy resulted in the occurrence of twinning with elevated stress levels. This phenomenon accelerated plastic deformation, resulting in an increased creep rate. Moreover, the creep fracture source zone was predominantly an intergranular fracture, whereas the propagation region was predominantly a transgranular fracture in both grain microstructures. The tendency for intergranular fracture in coarse-grained microstructures decreased with the increase in the creep stress level, vice versa was observed in fine-grained microstructures.

Key wordspowder metallurgy superalloy    creep rupture    stress    stacking fault    microtwin
收稿日期: 2023-04-06     
ZTFLH:  TF125.5  
基金资助:国家科技重大专项项目(2017-VI-0008-0078);北京钢研高纳科技股份有限公司项目(KZKJ02-GN0J-22012)
通讯作者: 刘建涛,ljtsuperalloys@sina.com,主要从事粉末高温合金的研究;
张义文,yiwen64@cisri.cn,主要从事粉末高温合金的研究
Corresponding author: LIU Jiantao, professor, Tel: (010)62182925, E-mail: ljtsuperalloys@sina.com;
ZHANG Yiwen, professor, Tel: (010)62186736, E-mail: yiwen64@cisri.cn
作者简介: 李新宇,男,1991年生,博士生
图1  蠕变试样的尺寸
图2  镍基粉末高温合金FGH4108的初始显微组织
Heat treatmentSamplePrecipitateAverage size / nmVolume fraction / %
HT1Coarse grainPrimary γ'5970.6
Secondary γ'24151.2
Tertiary γ'483.6
η40.3
HT2Fine grainPrimary γ'110722.0
Secondary γ'14628.0
Tertiary γ'532.6
η72.2
表1  粗晶和细晶试样中析出相的尺寸和体积分数
图3  粗晶和细晶试样中γ'相的等效粒径分布
图4  在700 ℃不同应力条件下粗晶试样和细晶FGH4108合金的蠕变性能

Sample

Stress

MPa

ε˙m

s-1

First stageSecond stageThird stage

ε1

%

ε1 / ε

%

t1

h

t1 / tr

%

ε2

%

ε2 / ε

%

t2

h

t2 / tr

%

ε3

%

ε3 / ε

%

t3

h

t3 / tr

%

Coarse grain9001.02 × 10-70.729.114.223.21.770.847.076.8----
8102.19 × 10-80.312.517.06.82.187.5233.093.2----
7808.15 × 10-90.510.2145.514.80.612.2166.316.93.877.6670.268.2
Fine grain9007.77 × 10-71.123.43.827.10.714.92.417.12.961.77.855.7
8109.53 × 10-80.66.915.614.90.910.318.918.07.282.870.567.1
7807.61 × 10-80.49.311.613.40.49.313.715.83.581.461.570.8
表2  在700 ℃下粗晶和细晶FGH4108合金的最小蠕变速率和各蠕变阶段的应变和时间
图5  700 ℃、900 MPa条件下粗晶试样中位错组态的TEM像和细晶试样中η相附近亚结构形貌的TEM像
图6  在700 ℃不同蠕变应力下粗晶试样中层错的TEM明场像
图7  在700 ℃不同蠕变应力下粗晶试样晶粒内微孪晶的TEM暗场像、选区电子衍射(SAED)花样和孪晶密度分析 (<011>带轴)
图8  在700 ℃、780 MPa蠕变条件下细晶试样中的层错(<001>带轴附近)和微孪晶(<011>带轴)形貌的TEM像
图9  粗晶和细晶试样宏观断口的OM像

Stress

MPa

Coarse grain sampleFine grain sample
Source region / %Expansion region / %Source region / %Expansion region / %
78023.047.822.248.6
81021.945.427.639.6
90012.953.427.338.4
表3  在700 ℃不同应力条件下蠕变断口的裂纹源区和扩展区的面积占比
图10  在700 ℃不同应力条件下粗晶和细晶试样断口断裂源区形貌的SEM像
图11  在700 ℃不同应力条件下粗晶和细晶试样断口断裂扩展区形貌的SEM像
图12  粗晶和细晶组织合金的应力敏感指数
图13  粗晶试样在700 ℃、780 MPa条件下蠕变断裂后晶界形貌的SEM像
图14  粗晶和细晶试样的蠕变速率和等强温度(TE)的影响关系示意图
1 Reed R C, Mottura A, Crudden D J. Alloys-by-design: Towards optimization of compositions of nickel-based superalloys [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendale: The Minerals, Metals & Materials Society, 2016: 15
2 Bai J M, Zhang H P, Li X Y, et al. Evolution of creep rupture mechanism in advanced powder metallurgy superalloys with tantalum addition [J]. J. Alloys Compd., 2022, 925: 166713
3 Liu P, Zhang R, Yuan Y, et al. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. J. Mater. Sci. Technol., 2021, 77: 66
4 Panella M, Signor L, Cormier J, et al. Experimental and simulation study of the effect of precipitation distribution and grain size on the AD730TM Ni-based polycrystalline superalloy tensile behavior [A]. Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys [C]. Cham: Springer, 2020: 570
5 Zhang B Y, Wang Z T, Yu H, et al. Microstructural origin and control mechanism of the mixed grain structure in Ni-based superalloys [J]. J. Alloys Compd., 2022, 900: 163515
6 Gayda J, Gabb T P, Kantzos P T. The effect of dual microstructure heat treatment on an advanced nickel-base disk alloy [A]. Superalloys 2004: Proceedings of the 10th International Symposium on Superalloys [C]. Warrendale: The Minerals, Metals & Materials Society, 2004: 323
7 Gabb T P, Kantzos P T, Telesman J, et al. Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk [J]. Int. J. Fatigue, 2011, 33: 414
8 Long H B, Liu Y N, Kong D L, et al. Shearing mechanisms of stacking fault and anti-phase-boundary forming dislocation pairs in the γ′ phase in Ni-based single crystal superalloy [J]. J. Alloys Compd., 2017, 724: 287
9 Xu L, Sun C Q, Cui C Y, et al. Effects of microstructure on the creep properties of a new Ni-Co base superalloy [J]. Mater. Sci. Eng., 2016, A678: 110
10 Ru Y, Li S S, Zhou J, et al. Dislocation network with pair-coupling structure in {111} γ/γ′ interface of Ni-based single crystal superalloy [J]. Sci. Rep., 2016, 6: 29941
11 Rai R K, Sahu J K, Pramanick A, et al. Creep deformation micro-mechanisms of CM 247 DS LC Ni-base superalloy under relevant service condition [J]. Mater. Charact., 2019, 150: 155
doi: 10.1016/j.matchar.2019.02.021
12 Jia C L, Li Y, Zhang F L, et al. The creep behavior of a disk superalloy under different stress conditions [J]. Met. Powder Rep., 2018, 73: 94
13 Dong K X, Yuan C, Gao S, et al. Creep properties of a powder metallurgy disk superalloy at 700 oC [J]. J. Mater. Res., 2017, 32: 624
14 Peng Z C, Liu P Y, Wang X Q, et al. Creep behavior of FGH96 superalloy at different service conditions [J]. Acta Metall. Sin., 2022, 58: 673
doi: 10.11900/0412.1961.2021.00207
14 彭子超, 刘培元, 王旭青 等. 不同服役条件下FGH96合金的蠕变特征 [J]. 金属学报, 2022, 58: 673
doi: 10.11900/0412.1961.2021.00207
15 Liu F, Wang Z X, Tan L M, et al. Creep behaviors of fine-grained Ni-base powder metallurgy superalloys at elevated temperatures [J]. J. Alloys Compd., 2021, 867: 158865
16 Thébaud L, Villechaise P, Crozet C, et al. Is there an optimal grain size for creep resistance in Ni-based disk superalloys? [J]. Mater. Sci. Eng., 2018, A716: 274
17 Sun F, Gu Y F, Yan J B, et al. Dislocation motion in a Ni-Fe-based superalloy during creep-rupture beyond 700 oC [J]. Mater. Lett., 2015, 159: 241
18 Mannan S L, Rodriguez P. Effect of grain size on creep rate in type 316 stainless steel at 873 and 973 K [J]. Met. Sci., 1983, 17: 63
19 Fang T T, Murty K L. Grain-size-dependent creep of stainless steel [J]. Mater. Sci. Eng., 1983, 61: L7
20 Kim Y K, Kim D, Kim H K, et al. An intermediate temperature creep model for Ni-based superalloys [J]. Int. J. Plasticity, 2016, 79: 153
21 Li X Y, Zhang H P, Bai J M, et al. The evolution of γ′ precipitates and hardness response of a novel PM Ni-based superalloy during thermal exposure [J]. J. Alloys Compd., 2023, 942: 168757
22 Yue Q Z, Liu L, Yang W C, et al. Stress dependence of the creep behaviors and mechanisms of a third-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 752
doi: 10.1016/j.jmst.2018.11.015
23 Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction [J]. Acta Mater., 2004, 52: 3737
24 Tian T, Hao Z B, Ge C C, et al. Effects of stress and temperature on creep behavior of a new third-generation powder metallurgy superalloy FGH100L [J]. Mater. Sci. Eng., 2020, A776: 139007
25 Guo J T, Ranucci D, Picco E, et al. An investigation on the creep and fracture behavior of cast nickel-base superalloy IN738LC [J]. Metall. Trans., 1983, 14A: 2329
26 Nategh S, Sajjadi S A. Dislocation network formation during creep in Ni-base superalloy GTD-111 [J]. Mater. Sci. Eng., 2003, A339: 103
27 Balikci E, Raman A, Mirshams R A. Tensile strengthening in the nickel-base superalloy IN738LC [J]. J. Mater. Eng. Perform., 2000, 9: 324
28 Zhang X, Jin T, Zhao N R, et al. Effect of strain rate on the tensile behavior of a single crystal nickel-base superalloy [J]. Mater. Sci. Eng., 2008, A492: 364
29 Guan S, Cui C Y, Yuan Y, et al. The role of phosphorus in a newly developed Ni-Fe-Cr-based wrought superalloy [J]. Mater. Sci. Eng., 2016, A662: 275
30 Cui L Q, Su H H, Yu J J, et al. The creep deformation and fracture behaviors of nickel-base superalloy M951G at 900 oC [J]. Mater. Sci. Eng., 2017, A707: 383
[1] 张浩鹏, 白佳铭, 李新宇, 李晓鲲, 贾建, 刘建涛, 张义文. HfTa对镍基粉末高温合金蠕变断裂特征和性能的影响[J]. 金属学报, 2025, 61(4): 583-596.
[2] 宋昱杉, 刘叡, 崔宇, 刘莉, 王福会. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为[J]. 金属学报, 2025, 61(2): 309-322.
[3] 刘彩艳, 冯泽华, 张云鹏, 余康, 吴璐, 马聪, 张静. Fe-Cr合金气泡演化动力学的相场法模拟[J]. 金属学报, 2024, 60(9): 1279-1288.
[4] 李彪, 张龙, 颜廷毅, 付华萌, 袁旭东, 文明月, 张宏伟, 李宏, 张海峰. 热处理工艺和W丝特性对W丝增强锆基非晶复合材料残余应力的影响[J]. 金属学报, 2024, 60(8): 1055-1063.
[5] 林皓, 李建, 杨钊龙, 钟圣怡. 中子衍射应力分析技术及其应用进展[J]. 金属学报, 2024, 60(8): 1017-1030.
[6] 谷黎明, 冯效铭, 于朝, 张峻凡, 刘振宇, 何伦华, 卢怀乐, 李小虎, 王晨, 张晓东, 肖伯律, 马宗义. 深冷循环对SiC/Al复合材料宏微观残余应力的影响[J]. 金属学报, 2024, 60(8): 1031-1042.
[7] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[8] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
[9] 龙江东, 段慧超, 赵鹏, 张瑞, 郑涛, 曲敬龙, 崔传勇, 杜奎. GH4151镍基高温合金 μ 相中的基面层错[J]. 金属学报, 2024, 60(2): 167-178.
[10] 徐一斐, 张楠, 许培鑫, 杜博睿, 史华, 王淼辉. 超高速激光原位熔覆Ti(C, B)/Ni60A复合涂层的界面特征与表面磨损机理[J]. 金属学报, 2024, 60(12): 1721-1730.
[11] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[12] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[13] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[14] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[15] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.