Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 396-403    DOI: 10.3724/SP.J.1037.2010.00035
  论文 本期目录 | 过刊浏览 |
基于刚黏塑性本构关系的钛合金空心整体结构成形过程三维有限元分析
赵 冰1;2; 李志强2; 韩秀全2;廖金华2; 侯红亮2; 白秉哲1
1. 清华大学科学材料与工程系; 北京 100081
2. 北京航空制造工程研究所; 北京 100024
THREE DIMENSIONAL FEMSIMULATION OF TITANIUM HOLLOW MONOLITHIC STRUCTURE PROCESS BASED ON VISCO–PLASTIC CONSTITUTIVE
ZHAO Bing 1;2; LI Zhiqiang 2; HAN Xiuquan 2; LIAO Jinhua 2; HOU Hongliang 2; BAI Bingzhe 1
1. School of Materials Science and Engineering; Tsinghua University; Beijing; 100081
2. Beijing Aeronautical Manufacturing Technology Research Institute; Beijing 100024
引用本文:

赵 冰 李志强 韩秀全 廖金华 侯红亮 白秉哲. 基于刚黏塑性本构关系的钛合金空心整体结构成形过程三维有限元分析[J]. 金属学报, 2010, 46(4): 396-403.
, . THREE DIMENSIONAL FEMSIMULATION OF TITANIUM HOLLOW MONOLITHIC STRUCTURE PROCESS BASED ON VISCO–PLASTIC CONSTITUTIVE[J]. Acta Metall Sin, 2010, 46(4): 396-403.

全文: PDF(3314 KB)  
摘要: 

建立了钛合金空心整体结构成形过程的三维有限元模型. 采用刚黏塑性本构关系, 基于Marc有限元程序, 分析了工艺参数对成形的影响. 研究表明, 扭转速度的提高使扭矩仅有较小的变化; 当模具速度和应变速率提高时, 热成形的成形力和超塑性成形的气压将提高. 随成形温度降低, 成形力显著提高, 当温度高于900℃时, 扭转成形的扭矩、热成形的成形力和超塑性成形的气体压力随温度的变化均不明显. 在有限元分析的基础上, 选取合适的工艺参数制备了钛合金空心整体结构模拟件,成形后的钛合金空心整体结构件面板厚度的实测值和模拟计算值具有相同的变化趋势, 两者吻合良好.

关键词 钛合金空心风扇整体结构三维有限元模拟扭转超塑成形    
Abstract

A three dimensional finite element model (FEM) was established to simulate the forming process of titanium alloy hollow monolithic structure. The influence of process parameters on this process was analyzed by finite element method code MSC.Marc in which a rigid–viscoplatic constitutive equation was implemented. The results demonstrated that with the increase of twisting velocity, the torque on the hollow structure changes indistinctively. In case of increasing die velocity and target strain rate, the forming force of hot forming and gas pressure of superplastic forming will increase. On the contrary, along with the increasing of temperature, the forming force decreased. In case of temperature above 900 ℃, the influence of temperature on the forming force and gas pressure was weaken. Based n FEM, at the conditions oprocess paramtrs, like torsions speed of 4.376×10−3 rad/s, hot forming die velocity of 2.12×10−1 mm/starget strain rate o1.0×10−3 s−1, as well as at the temperature of 925 ℃, a simulacrum f hollow mnolithic structure ftitanium alloy was prepared, the thickness distribution of the ace sheet of the obtained part was in good agreement with the simulated results.

Key wordstitanium alloy hollow monolithic structure    three dimensional FEM    twisting    superplastic forming
收稿日期: 2010-01-19     
作者简介: 赵冰, 男, 1975年生, 高级工程师

[1] Blenkinsop P A. J de Phys IV, 1993; 3(7): 161
[2] Liang C H. Aeroengine, 2006; 32(3): 48
(梁春华. 航空发动机, 2006; 32(3): 48)
[3] Fitzpatrick G A, Loyd A D. Intelligent Processing of High Performance Materials, Neuilly–Sur–Seine: Research and Technology Organization, 1999: 41
[4] Wood R D, Bonet J. J Mater Process Technol, 1996; 60: 45
[5] Rusz S, Lapkowski W, Sinczak J, Boruta J. J Mater Process Technol, 1996; 60: 697
[6] Bonet J, Antonio G, Richard D W. Comput Methods Appl Mech Eng, 2006; 195: 6580
[7] Zhang K F, Zhao Q Y, Wang C W, Wang Z R. J Mater Process Technol, 1995; 55: 24
[8] Kim Y H, Hong S S, Lee J S, Wagoner R H. J Mater Process Technol, 1996; 62: 90
[9] Lee K S, Huh H, Choy Y J. J Mater Process Technol, 1997; 63: 684
[10] Chen Y, Kibble K, Hall R, Huang X. Mater Des, 2001; 22: 679
[11] Li C C, Cheng J H. Mater Sci Eng, 2002; A333: 146
[12] Tao J, Keaveyb M A. J Mater Process Technol, 2004; 147: 111
[13] Lee K S, Huh H. J Mater Process Technol, 2001; 113: 754
[14] Bonet J, Bhargava P, Wood R D. Int J Numer Methods Eng, 1997; 40: 3205
[15] Bonet J, Bhargava P. Comput Methods Appl Mech Eng, 1995; 122: 51
[16] Li G Y, Tan M J, Liew K M. J Mater Process Technol, 2004; 150: 76
[17] Hambli R, Potiron A. Comput Methods Appl Mech Eng, 2001; 190: 4871
[18] Li G Y, Tan M J, Liew K M. J Mater Process Technol, 2004; 150: 76
[19] Wu W, Zhang K F, Song Q F. Acta Aeronaut Astronaut Sin, 2000; 21: 364
(吴 为, 张凯锋, 宋全峰. 航空学报, 2000; 21: 364)
[20] Zhang K F, Han W B, Wu W, Wang G F, Wu D Z. J Mater Sci Technol, 2003; 19: 46
[21] Xing H L, Zhang K F, Wang Z R. J Mater Process Technol, 2004; 151: 284
[22] Hwang Y M, Lay H S. J Mater Process Technol, 2003; 140: 426
[23] Adam L, Ponthot J P. J Mater Process Technol, 2003; 139: 295
[24] Lee K S, Huh H. J Mater Process Technol, 1999; 89–90: 92
[25] Seshacharyulu T, Medeiros S C, Frazier W G. Mater Sci Eng, 2000; A284: 184
[26] Bonet J, Wargadipura A H S, Wood R D. Commun Appl Num Meth, 1998; 5: 121
[27] Cheng J H. Int J Mech Sci, 1994; 36: 981
[28] Huh H, Han S S. In: Chenot J L ed., Proceedings of the Numerical Methods of Industrial Forming Processes. France: Valbonne, 1992: 861
[29] Akkus N, Kawahara K M, Nishimura H. J Mater Process Technol, 1997; 68: 21

[1] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[2] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[3] 谢子令 武晓雷 谢季佳 洪友士. 高压扭转Cu试样微观组织的热稳定性分析[J]. 金属学报, 2010, 46(4): 458-465.
[4] 谢子令; 武晓雷; 谢季佳; 洪友士 . 高压扭转铜试样的微观组织与压缩性能[J]. 金属学报, 2008, 44(7): 803-809 .
[5] 于慧臣; 孙燕国; 张岩基; 谢世殊; 田中启介 . 不锈钢在扭转/拉伸复合载荷下近门槛值的疲劳裂纹扩展行为[J]. 金属学报, 2006, 42(2): 186-190 .
[6] 周利;苟文选. 钢的韧脆转变过程与临界空穴扩张状态[J]. 金属学报, 1996, 32(10): 1063-1067.
[7] 沈健;张新明;章四琪;尹志民;卢斌;宋恒早;舒先进. 工业纯Al高温扭转时的动态回复和动态再结晶[J]. 金属学报, 1995, 31(9): 411-416.
[8] 胡志忠;吴玉声;蔡和平;马丽华. 扭转疲劳断裂机制图[J]. 金属学报, 1990, 26(5): 50-55.