Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1189-1194    DOI: 10.11900/0412.1961.2014.00099
  本期目录 | 过刊浏览 |
316奥氏体不锈钢离子辐照损伤中的温度效应研究
黄鹤飞1,2, 李健健1,2, 刘仁多1,2, 陈怀灿1,2, 闫隆1,2()
1 中国科学院核辐射与核技术重点实验室, 上海201800
2 中国科学院上海应用物理研究所, 上海 201800
TEMPERATURE EFFECT OF Xe ION IRRADIATION TO 316 AUSTENITIC STAINLESS STEEL
HUANG Hefei1,2, LI Jianjian1,2, LIU Renduo1,2, CHEN Huaican1,2, YAN Long1,2()
1 Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800
2 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
引用本文:

黄鹤飞, 李健健, 刘仁多, 陈怀灿, 闫隆. 316奥氏体不锈钢离子辐照损伤中的温度效应研究[J]. 金属学报, 2014, 50(10): 1189-1194.
Hefei HUANG, Jianjian LI, Renduo LIU, Huaican CHEN, Long YAN. TEMPERATURE EFFECT OF Xe ION IRRADIATION TO 316 AUSTENITIC STAINLESS STEEL[J]. Acta Metall Sin, 2014, 50(10): 1189-1194.

全文: PDF(1969 KB)   HTML
摘要: 

采用7 MeV的Xe26+和1 MeV的Xe20+在室温和600 ℃下分别对316SS块体和TEM试样进行了辐照实验. 利用纳米压痕仪测试材料辐照损伤前后的显微硬度, 利用TEM观察辐照损伤前后的微观结构演变, 并将室温和600 ℃的实验结果进行了比对. 结果表明, 室温离子辐照造成316SS中形成大量尺寸在3~8 nm之间的位错环缺陷, 它们会阻碍材料内位错线的自由移动, 进而导致材料的硬化. 在600 ℃辐照下, 316SS内形成了尺寸介于4~12 nm之间的溶质原子团簇缺陷. 尽管其尺寸较室温辐照下形成的位错环有轻微的增大, 但是其体积密度较前者显著地降低, 辐照硬化现象发生了明显的回复, 材料辐照损伤行为存在温度效应.

关键词 316奥氏体不锈钢氙离子辐照辐照硬化温度效应    
Abstract

Molten Salt Reactors (MSR) is one of the six most promising Generation IV fission reactors. In the ultimate goals, MSR should run at temperatures over 1000 K, and its neutron irradiation damage doses could reach 100 dpa or more for the core components. Hence, the evaluation of irradiation damage under high temperature for structural materials is of particular importance for ensuring the safe operation of MSR. It is generally accepted the structural materials used for MSR should be Ni-based alloys, especially the Hastelloy N alloy. Recently, the 316 austenitic stainless steel (316SS) was considered as a candidate structural material for MSR. In this study, bulk and TEM specimens of 316SS have been characterized by nanoindentation and TEM to determine the change of micro-hardness and microstructural evolution after 7 MeV Xe26+ and 1 MeV Xe20+ iron irradiation, respectively. The irradiation experiments were carried out at room temperature (about 22 ℃) and 600 ℃, and the ion fluences correspond to calculated peak damge dose of 0.62 and 3.7 dpa. The nanoindentation results for bulk specimens showed the irradiation induced hardening of 316SS irradiated at room temperature, and the hardenability increases with increasing ion damage dose. However, in the case of the irradiation at 600 ℃, the hardness of 316SS keep the same level with that of the unirradiated specimen. The recovery of irradiation induced hardening occurred at 600 ℃ compared with the room temperature irradiation. The TEM results showed that the presence of high number density of nanoscale dislocation loops, with the diameter of 3~8 nm, in 316SS irradiated at room temperature. The number density of these dislocation loops increase with the increase of ion damage dose. As far as the irradiated 316SS under 600 ℃, several solute clusters were observed with the size range from 4 to 12 nm, which a little larger than the dislocation loops. It should be noted that the number density is far smaller than that of the dislocation loops in former case. The radiation induced defects (dislocation loops, solute clusters) were believed to be responsible for the hardening in 316SS. The temperature effect of Xe ion irradiation to 316SS was discussed using the Orowan mechanism. The stronger diffusion of point defects caused by ion implantation at 600 ℃ was considered to be the main reason for the recovery of irradiation induced hardening, in which the vacancies and interstitials have greater probability for recombination and then disappear, resulting in the exiguous nucleation sites for the formation of solute clusters.

Key words316 austenite stainless steel    Xe ion irradiation    irradiation hardening    temperature effect
收稿日期: 2014-03-05     
ZTFLH:  TL341  
基金资助:*国家重点基础研究发展计划项目2010CB832903和中国科学院上海应用物理研究所新锐计划项目资助
作者简介: null

黄鹤飞, 男, 1984年生, 助理研究员, 博士

图1  1 MeV Xe20+和7 MeV Xe26+离子辐照316SS的TEM及块体试样造成的辐照损伤分布情况
图2  室温和600 ℃下离子辐照前后316SS的平均纳米硬度-压入深度曲线
图3  室温和600 ℃下离子辐照前后316SS的H2-1/h关系曲线
图4  室温和600 ℃下离子辐照前后316SS的TEM明场像
图5  室温和600 ℃下离子辐照前后316SS内形成缺陷的体积密度变化
[1] Abram T, Ion S. Energy Policy, 2008; 36: 4323
[2] Wanderka N, Bakai A, Abromeit C, Isheim D, Seidman D N. Ultramicroscopy, 2007; 107: 786
[3] Jiang M H, Xu H J, Dai Z M. Bull Chin Acad Sci, 2012; 27: 366
[3] (江绵恒, 徐洪杰, 戴志敏.中国科学院院刊, 2012; 27: 366)
[4] Murty K L, Charit I. J Nucl Mater, 2008; 383: 189
[5] Yvon P, Carre F. J Nucl Mater, 2009; 385: 217
[6] Zinkel S J, Was G S. Acta Mater, 2013; 61: 735
[7] Preliminary Fluoride Salt-Cooled High Temperature Reactor (FHR) Materials Components White Paper, UCBTH-1-003, 2012
[8] Was G S, Busby J T, Allen T, Kenik E A, Jensson A, Bruemmer S M, Gan J, Edwards A D, Scott P M, Andreson P L. J Nucl Mater, 2002; 300: 198
[9] Edwards D J, Simonen E P, Garner F A, Greenwood L R, Olivier B M, Bruemmer S M. J Nucl Mater, 2003; 317: 32
[10] Miura T, Fujii K, Fukuya K, Ito Y. J Nucl Mater, 2009; 386-388: 210
[11] Etienne A, Hernández-Mayoral M, Genevois C, Radiguet B, Pareige P. J Nucl Mater, 2010; 400: 56
[12] Etienne A, Radiguet B, Cunningham N J, Odette G R, Valiev R, Pareige P. Ultramicroscopy, 2011; 111: 659
[13] Pennell W E. Nucl Technol, 1972; 16: 332
[14] Mao L B, Yang Z Q, Shan R H, Shui Z W, Yin S J, Lu C L, Peng X M. China Nucl Sci Technol Rep, 2003; 3: 10
[14] (毛林彬, 杨治全, 单润华, 税忠伟, 尹顺玖, 鲁长龙, 彭小明.中国核科技报告, 2003; 3: 10)
[15] Muthukumaran V, Selladurai V, Nandhakumar S, Senthilkumar M. Mater Des, 2010; 31: 2813
[16] Zheng Y N, Zuo Y, Yuan D Q, Zhou D M, Xu Y J, Fan P, Zhu J Z, Wang Z Q, Zhu S Y. Nucl Phys, 2010; 834A: C761
[17] Nagy P M, Aranyi D, Horvath P, Peto G, Kalman E. Surf Interf Anal, 2008; 40: 875
[18] Ma X, Liu H P, Sun L T, Song M T, Zhu X L, Sha S, Feng W T, Zhang D C, Zhang S F, Li B, Li J Y, Qian D B, Xu S Y, Gao D Q, Wang P Z, Ma L Z, Man K D, Xiao G Q, Zhao H W, Zhan W L. J Phys Conf Ser, 2009; 163: 012104
[19] Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A. Nucl Instrum Methods Phys Res, 2013; 310B: 75
[20] Lee E H, Lee Y, Oliver W C, Mansur L K. J Mater Res, 1993; 8: 377
[21] Nix W D, Gao H. J Mech Solids, 1998; 46: 411
[22] Kasada R, Takayama Y, Yabuuchi K, Kimura A. Fusion Eng Des, 2011; 86: 2658
[23] Takayama Y, Kasada R, Sakamoto Y, Yabuuchi K, Kimura A, Ando M, Hamaguchi D. J Nucl Mater, 2013; 442: S23
[24] Liu X B, Wang R S, Rei A, Jiang J, Xu C L, Huang P, Qian W J, Wu Y C, Zhang C H. J Nucl Mater, 2014; 444: 1
[25] Huang H F, Li D H, Li J J, Liu R D, Lei G H, He S X, Huang Q, Yan L. Mater Trans, 2014; 55: 1243
[26] Hernandez-Mayoral M, Yao Z, Jenkins M L, Kirk M A. Philos Mag, 2014; 88: 2881
[27] Jenkins M L, English C A, Eyre B L. Philos Mag, 1978; 38A: 97
[28] Calder A F, Bacon D J. J Nucl Mater, 1993; 207: 25
[29] OsetskyY N, Bacon D J, Singh B N, Wirth B. J Nucl Mater, 2002; 307-311: 852
[30] Radiguet B, Barbu A, Pareige P. J Nucl Mater, 2007; 360: 104
[31] Etienne A, Radiguet B, Cunningham N J, Odette G R, Pareige P. J Nucl Mater, 2010; 406: 244
[32] Huang H F. PhD Dissertation, University of Rouen, 2012
[33] Huang H F,Radiguet B,Todeschini P,Chas G,Pareige P. In: Gibson J K, McCall S K, Bauer E D, Soderholm L, Fanghaenel T, Devanathan R, Misra A, Trautmann C, Wirth B D eds., Proc MRS 2010 on Basic Actinide Science and Materials for Nuclear Applications, Pennsylvania: The Cambridge University Press, 2010: 235
[34] Gan J, Simonen E P, Bruemmer S M, Fournier L, Sencer B H, Was G S. J Nucl Mater, 2004; 325: 94
[35] Lambrecht M, Meslin E, Malerba L, Hernandez-Mayoral M, Bergner F, Pareige P, Radiguet B, Almazouzi A. J Nucl Mater, 2010; 406: 84
[36] Yang W D.Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 1
[36] (杨文斗.反应堆材料学. 北京: 原子能出版社. 第2版, 2006: 1)
[1] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[2] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[3] 何东昱,刘玉欣. 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜90°分步畴转与温度效应[J]. 金属学报, 2019, 55(3): 325-331.
[4] 邓平, 彭群家, 韩恩厚, 柯伟, 孙晨, 夏海鸿, 焦治杰. 国产核用不锈钢辐照损伤研究[J]. 金属学报, 2017, 53(12): 1588-1602.
[5] 钱友荣;何向东. 高强度钢腐蚀疲劳裂纹扩展的温度效应和过载迟滞效应[J]. 金属学报, 1989, 25(6): 60-64.