|
|
微生物抑制5754铝合金的海水腐蚀行为 |
申媛媛, 董耀华( ), 董丽华, 尹衍升 |
上海海事大学海洋科学与工程学院 上海 201306 |
|
Corrosion Inhibition Effect of Microorganism on 5754 Al Alloy in Seawater |
SHEN Yuanyuan, DONG Yaohua( ), DONG Lihua, YIN Yansheng |
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China |
引用本文:
申媛媛, 董耀华, 董丽华, 尹衍升. 微生物抑制5754铝合金的海水腐蚀行为[J]. 金属学报, 2020, 56(12): 1681-1689.
Yuanyuan SHEN,
Yaohua DONG,
Lihua DONG,
Yansheng YIN.
Corrosion Inhibition Effect of Microorganism on 5754 Al Alloy in Seawater[J]. Acta Metall Sin, 2020, 56(12): 1681-1689.
[1] |
Ezuber H, El-Houd A, El-Shawesh F. A study on the corrosion behavior of aluminum alloys in seawater [J]. Mater. Des., 2008, 29: 801
doi: 10.1016/j.matdes.2007.01.021
|
[2] |
Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy [J]. Surf. Coat. Technol., 2017, 316: 171
doi: 10.1016/j.surfcoat.2017.02.057
|
[3] |
Reboul M C, Baroux B. Metallurgical aspects of corrosion resistance of aluminium alloys [J]. Mater. Corros., 2011, 62: 215
|
[4] |
Villanueva M E, Salinas A, Copello G J, et al. Point of zero charge as a factor to control biofilm formation of Pseudomonas aeruginosa in sol-gel derivatized aluminum alloy plates [J]. Surf. Coat. Technol., 2014, 254: 145
doi: 10.1016/j.surfcoat.2014.05.074
|
[5] |
Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
doi: 10.1016/j.corsci.2018.05.036
|
[6] |
Donatus U, Thompson G E, Omotoyinbo J A, et al. Corrosion pathways in aluminium alloys [J]. Trans. Nonferrous Met. Soc., 2017, 27: 55
doi: 10.1016/S1003-6326(17)60006-2
|
[7] |
Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
doi: 10.1016/j.corsci.2017.03.008
|
[8] |
Zhou E Z, Li H B, Yang C T, et al. Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Int. Biodeter. Biodegr., 2018, 127: 1
doi: 10.1016/j.ibiod.2017.11.003
|
[9] |
Little B J, Lee J S, Ray R I. The influence of marine biofilms on corrosion: A concise review [J]. Electrochim. Acta, 2008, 54: 2
doi: 10.1016/j.electacta.2008.02.071
|
[10] |
Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
doi: 10.1016/j.corsci.2014.09.005
|
[11] |
Dou W W, Jia R, Jin P, et al. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria [J]. Corros. Sci., 2018, 144: 237
doi: 10.1016/j.corsci.2018.08.055
|
[12] |
Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
doi: 10.1016/j.corsci.2017.08.007
|
[13] |
Homborg A M, Leon M C F, Tinga T, et al. Detection of microbiologically influenced corrosion by electrochemical noise transients [J]. Electrochim. Acta, 2014, 136: 223
doi: 10.1016/j.electacta.2014.05.102
|
[14] |
Giacobone A F F, Rodriguez S A, Burkart A L, et al. Microbiological induced corrosion of AA 6061 nuclear alloy in highly diluted media by Bacillus cereus RE 10 [J]. Int. Biodeter. Biodegr., 2011, 65: 1161
doi: 10.1016/j.ibiod.2011.08.012
|
[15] |
Moradi M, Song Z L, Yang L J, et al. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel [J]. Corros. Sci., 2014, 84: 103
doi: 10.1016/j.corsci.2014.03.018
|
[16] |
Mansfeld F, Hsu H, Örnek D, et al. Corrosion control using regenerative biofilms on aluminum 2024 and brass in different media [J]. J. Electrochem. Soc., 2002, 149: B130
doi: 10.1149/1.1456922
|
[17] |
Jayaraman A, Ornek D, Duarte D A, et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Appl. Microbiol. Biotechnol., 1999, 52: 787
doi: 10.1007/s002530051592
pmid: 10616712
|
[18] |
Jia R, Yang D Q, Xu D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38
doi: 10.1016/j.bioelechem.2017.06.013
pmid: 28715664
|
[19] |
Weiner S, Dove P M. An overview of biomineralization processes and the problem of the vital effect [J]. Rev. Mineral. Geochem., 2003, 54: 1
doi: 10.2113/0540001
|
[20] |
Dejong J T, Mortensen B M, Martinez B C, et al. Bio-mediated soil improvement [J]. Ecol. Eng., 2010, 36: 197
doi: 10.1016/j.ecoleng.2008.12.029
|
[21] |
Uad I, Gonzalez-Lopez J, Silva-Castro A G, et al. Precipitation of carbonates crystals by bacteria isolated from a submerged fixed-film bioreactor used for the treatment of urban wastewater [J]. Int. J. Environ. Res., 2014, 8: 435
|
[22] |
Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
doi: 10.1016/j.corsci.2015.09.023
|
[23] |
Konhauser K O. Diversity of bacterial iron mineralization [J]. Earth-Sci. Rev., 1998, 43: 91
doi: 10.1016/S0012-8252(97)00036-6
|
[24] |
Abraham W R, Nogales B, Golyshin P N, et al. Polychlorinated biphenyl-degrading microbial communities in soils and sediments [J]. Curr. Opin. Microbiol., 2002, 5: 246
doi: 10.1016/s1369-5274(02)00323-5
pmid: 12057677
|
[25] |
Liu T, Guo Z W, Zeng Z S, et al. Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization [J]. ACS Appl. Mater. Interfaces, 2018, 10: 40317
doi: 10.1021/acsami.8b14991
pmid: 30335931
|
[26] |
Lewis A C, Heard P J. The effects of calcium phosphate deposition upon corrosion of CoCr alloys and the potential for implant failure [J]. J. Biomed. Mater. Res., 2005, 75A: 365
doi: 10.1002/(ISSN)1552-4965
|
[27] |
Abdel-Gawad S A, Osman W M, Fekry A M. Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater [J]. Surf. Interfaces, 2019, 14: 314
|
[28] |
Acosta G, Veleva L, López J L, et al. Contrasting initial events of localized corrosion on surfaces of 2219-T42 and 6061-T6 aluminum alloys exposed in Caribbean seawater [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 34
doi: 10.1016/S1003-6326(18)64912-X
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|