Please wait a minute...
金属学报  2020, Vol. 56 Issue (12): 1681-1689    DOI: 10.11900/0412.1961.2020.00129
  本期目录 | 过刊浏览 |
微生物抑制5754铝合金的海水腐蚀行为
申媛媛, 董耀华(), 董丽华, 尹衍升
上海海事大学海洋科学与工程学院 上海 201306
Corrosion Inhibition Effect of Microorganism on 5754 Al Alloy in Seawater
SHEN Yuanyuan, DONG Yaohua(), DONG Lihua, YIN Yansheng
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
引用本文:

申媛媛, 董耀华, 董丽华, 尹衍升. 微生物抑制5754铝合金的海水腐蚀行为[J]. 金属学报, 2020, 56(12): 1681-1689.
Yuanyuan SHEN, Yaohua DONG, Lihua DONG, Yansheng YIN. Corrosion Inhibition Effect of Microorganism on 5754 Al Alloy in Seawater[J]. Acta Metall Sin, 2020, 56(12): 1681-1689.

全文: PDF(2478 KB)   HTML
摘要: 

采用失重法分析5754铝合金在含海洋常见微生物枯草芽孢杆菌(B.subtilis)的海水中的腐蚀行为,利用SEM和白光干涉仪分别观察了表面腐蚀产物形貌及腐蚀轮廓,并用EDS和XRD分析了表面腐蚀产物成分,最后利用EIS研究该铝合金的腐蚀机理。结果表明,浸泡在含有微生物B.subtilis的海水环境中,铝合金腐蚀速率为12.5 mg/(dm2·d),仅为浸泡在不含有微生物海水环境中铝合金腐蚀速率的1/6。浸泡在含有B.subtilis的海水环境中,铝合金表面逐渐形成一层以CaMg(CO3)2为主要成分的矿化物质膜,微生物B.subtilis的存在促进了生物矿化膜的形成,阻碍了海水对铝合金的侵蚀,从而抑制了铝合金在海水环境中的点蚀。

关键词 5754铝合金微生物抑制海水腐蚀生物矿化膜    
Abstract

Currently, with the gradual depletion of onshore resources, more efforts are being devoted to both scientific and resource exploitation of the ocean and the deep sea. Compared with the onshore environment, marine habitats are complex and characterized by high hydrostatic pressure, high salinity, and high marine population. The ocean is a unique aquatic environment, and it has a large population of microorganisms. There is a need to exploit the ocean for new energy sources. The significant challenges of exploiting oil, gas, and minerals have forced the people to innovate and develop advanced exploration tools. Al alloys are attractive for use in marine environments due to their low densities, high strengths, good plasticity, excellent electrical and thermal conductivities, and excellent corrosion resistance. The high chloride concentrations and microorganisms in the ocean have a significant effect on the corrosion resistance of many metallic materials. In this work, the corrosion behavior of 5754 Al alloy in seawater containing B.subtilis was investigated. The corrosion rate was analyzed by the weight loss method. The morphologies of the corrosion products and the corrosion profiles were observed by SEM and white light interferometer, respectively. The corrosion products were analyzed by energy dispersive spectroscopy and XRD. Finally, the corrosion mechanism of the Al alloy was studied using electrochemical impedance spectroscopy. The results show that the corrosion rate of the Al alloy in the seawater with B.subtilis was 12.5 mg/(dm2·d), which was only 1/6 times that in the seawater without the bacteria. A protective film comprising of CaMg(CO3)2 was gradually formed on the surface of the alloy in the presence of the bacteria. The bacteria promoted the formation of the CaMg(CO3)2 film, which protected the alloy from the seawater, and consequently, inhibited the pitting corrosion of the Al alloy in the marine environment.

Key words5754 Al alloy    microorganism    inhibition marine corrosion    biomineralized film
收稿日期: 2020-04-22     
ZTFLH:  TG174.3  
基金资助:国家自然科学基金项目(51609133)
作者简介: 申媛媛,女,1989年生,博士,工程师
图1  5754铝合金在不同溶液中浸泡前后的表面形貌及成分分析(a) original morphology of 5754 Al alloy(b) immersed in sterilized seawater for 15 d(c) immersed in seawater with bacteria for 15 d(d) partial magnification of the film in Fig.1c (Inset shows the morphology of bacteria)(e) EDS result of zone 1 in Fig.1b(f) EDS result of zone 2 in Fig.1c
图2  5754铝合金在2种溶液中浸泡15 d后表面的XRD谱
图3  5754铝合金浸泡前后的表面腐蚀轮廓图Color online
图4  5754铝合金在不含微生物B.subtilis的海水中浸泡不同时间的EIS(a) Nyquist plots(b) Bode impedance plots(c) Bode angle plots
图5  5754铝合金在含微生物B.subtilis的海水中浸泡不同时间的EIS(a) Nyquist plots(b) Bode impedance plots(c) Bode angle plots
图6  5754铝合金在2种溶液中浸泡不同时间的等效电路图
Time
d
Rs
Ω·cm2
QfRf
Ω·cm2
QdlRct
Ω·cm2
χ2
Yf
Ω-1·cm-2·snf
nfY0
Ω-1·cm-2·sn
n
110.79---4.17×10-50.9071.61×1050.00217
59.153.07×10-50.9056.99×1041.34×10-40.5302.28×1040.00321
1010.842.03×10-50.9233.56×1041.62×10-40.7331.48×1040.00410
1510.664.60×10-40.7241.68×1022.95×10-50.9481.23×1040.00160
表1  5754铝合金在不含微生物的海水中浸泡不同时间的电化学拟合参数
Time
d
Rs
Ω·cm2
QfRf
Ω·cm2
QdlRct
Ω·cm2
χ2
Yf
Ω-1·cm-2·snf
nfY0
Ω-1·cm-2·sn
n
19.34---1.42×10-50.9121.97×1050.00359
59.857.60×10-40.5943.28×1033.39×10-50.9508.81×1040.00017
1010.123.56×10-40.6734.33×1033.44×10-50.9521.11×1050.00294
159.352.50×10-40.6879.50×1032.43×10-50.9843.03×1050.00023
表2  5754铝合金在含微生物的海水中浸泡不同时间的电化学拟合参数
图7  5754铝合金在2种溶液中浸泡不同时间的膜层电阻与电荷转移电阻之和随时间的变化
[1] Ezuber H, El-Houd A, El-Shawesh F. A study on the corrosion behavior of aluminum alloys in seawater [J]. Mater. Des., 2008, 29: 801
doi: 10.1016/j.matdes.2007.01.021
[2] Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy [J]. Surf. Coat. Technol., 2017, 316: 171
doi: 10.1016/j.surfcoat.2017.02.057
[3] Reboul M C, Baroux B. Metallurgical aspects of corrosion resistance of aluminium alloys [J]. Mater. Corros., 2011, 62: 215
[4] Villanueva M E, Salinas A, Copello G J, et al. Point of zero charge as a factor to control biofilm formation of Pseudomonas aeruginosa in sol-gel derivatized aluminum alloy plates [J]. Surf. Coat. Technol., 2014, 254: 145
doi: 10.1016/j.surfcoat.2014.05.074
[5] Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
doi: 10.1016/j.corsci.2018.05.036
[6] Donatus U, Thompson G E, Omotoyinbo J A, et al. Corrosion pathways in aluminium alloys [J]. Trans. Nonferrous Met. Soc., 2017, 27: 55
doi: 10.1016/S1003-6326(17)60006-2
[7] Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
doi: 10.1016/j.corsci.2017.03.008
[8] Zhou E Z, Li H B, Yang C T, et al. Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm [J]. Int. Biodeter. Biodegr., 2018, 127: 1
doi: 10.1016/j.ibiod.2017.11.003
[9] Little B J, Lee J S, Ray R I. The influence of marine biofilms on corrosion: A concise review [J]. Electrochim. Acta, 2008, 54: 2
doi: 10.1016/j.electacta.2008.02.071
[10] Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
doi: 10.1016/j.corsci.2014.09.005
[11] Dou W W, Jia R, Jin P, et al. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria [J]. Corros. Sci., 2018, 144: 237
doi: 10.1016/j.corsci.2018.08.055
[12] Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
doi: 10.1016/j.corsci.2017.08.007
[13] Homborg A M, Leon M C F, Tinga T, et al. Detection of microbiologically influenced corrosion by electrochemical noise transients [J]. Electrochim. Acta, 2014, 136: 223
doi: 10.1016/j.electacta.2014.05.102
[14] Giacobone A F F, Rodriguez S A, Burkart A L, et al. Microbiological induced corrosion of AA 6061 nuclear alloy in highly diluted media by Bacillus cereus RE 10 [J]. Int. Biodeter. Biodegr., 2011, 65: 1161
doi: 10.1016/j.ibiod.2011.08.012
[15] Moradi M, Song Z L, Yang L J, et al. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel [J]. Corros. Sci., 2014, 84: 103
doi: 10.1016/j.corsci.2014.03.018
[16] Mansfeld F, Hsu H, Örnek D, et al. Corrosion control using regenerative biofilms on aluminum 2024 and brass in different media [J]. J. Electrochem. Soc., 2002, 149: B130
doi: 10.1149/1.1456922
[17] Jayaraman A, Ornek D, Duarte D A, et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Appl. Microbiol. Biotechnol., 1999, 52: 787
doi: 10.1007/s002530051592 pmid: 10616712
[18] Jia R, Yang D Q, Xu D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38
doi: 10.1016/j.bioelechem.2017.06.013 pmid: 28715664
[19] Weiner S, Dove P M. An overview of biomineralization processes and the problem of the vital effect [J]. Rev. Mineral. Geochem., 2003, 54: 1
doi: 10.2113/0540001
[20] Dejong J T, Mortensen B M, Martinez B C, et al. Bio-mediated soil improvement [J]. Ecol. Eng., 2010, 36: 197
doi: 10.1016/j.ecoleng.2008.12.029
[21] Uad I, Gonzalez-Lopez J, Silva-Castro A G, et al. Precipitation of carbonates crystals by bacteria isolated from a submerged fixed-film bioreactor used for the treatment of urban wastewater [J]. Int. J. Environ. Res., 2014, 8: 435
[22] Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
doi: 10.1016/j.corsci.2015.09.023
[23] Konhauser K O. Diversity of bacterial iron mineralization [J]. Earth-Sci. Rev., 1998, 43: 91
doi: 10.1016/S0012-8252(97)00036-6
[24] Abraham W R, Nogales B, Golyshin P N, et al. Polychlorinated biphenyl-degrading microbial communities in soils and sediments [J]. Curr. Opin. Microbiol., 2002, 5: 246
doi: 10.1016/s1369-5274(02)00323-5 pmid: 12057677
[25] Liu T, Guo Z W, Zeng Z S, et al. Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization [J]. ACS Appl. Mater. Interfaces, 2018, 10: 40317
doi: 10.1021/acsami.8b14991 pmid: 30335931
[26] Lewis A C, Heard P J. The effects of calcium phosphate deposition upon corrosion of CoCr alloys and the potential for implant failure [J]. J. Biomed. Mater. Res., 2005, 75A: 365
doi: 10.1002/(ISSN)1552-4965
[27] Abdel-Gawad S A, Osman W M, Fekry A M. Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater [J]. Surf. Interfaces, 2019, 14: 314
[28] Acosta G, Veleva L, López J L, et al. Contrasting initial events of localized corrosion on surfaces of 2219-T42 and 6061-T6 aluminum alloys exposed in Caribbean seawater [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 34
doi: 10.1016/S1003-6326(18)64912-X
[1] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[2] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[3] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[4] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[5] 于利宝, 闫茂成, 马健, 吴明浩, 舒韵, 孙成, 许进, 于长坤, 卿永长. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为[J]. 金属学报, 2017, 53(12): 1568-1578.
[6] 卿永长,杨志炜,鲜俊,许进,闫茂成,吴堂清,于长坤,于利宝,孙成. 交流电和微生物共同作用下Q235钢的腐蚀行为*[J]. 金属学报, 2016, 52(9): 1142-1152.
[7] 吴进怡 柴柯 肖伟龙 杨雨辉 韩恩厚. 25钢在海水中的微生物单因素腐蚀[J]. 金属学报, 2010, 46(6): 755-760.
[8] 吴进怡 肖伟龙 柴柯 杨雨辉. 热带海洋环境下海水中微生物对45钢腐蚀行为的单因素影响[J]. 金属学报, 2010, 46(1): 118-122.
[9] 刘建华; 梁馨; 李松梅 . 硫酸盐还原菌对两种不锈钢的腐蚀作用[J]. 金属学报, 2005, 41(5): 545-550 .
[10] 陈志刚; 凌云; P.Guempel; M.Kasser . 微生物影响下不锈钢焊缝的腐蚀机理[J]. 金属学报, 2001, 37(7): 741-744 .