Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 885-897    DOI: 10.11900/0412.1961.2019.00302
  本期目录 | 过刊浏览 |
带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为
魏洁1, 魏英华2, 李京2, 赵洪涛2, 吕晨曦2, 董俊华1(), 柯伟3, 何小燕3
1.中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
2.中国科学院金属研究所沈阳先进材料研发中心 沈阳 110016
3.中国科学院金属研究所材料环境腐蚀研究中心 沈阳 110016
Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization
WEI Jie1, WEI Yinghua2, LI Jing2, ZHAO Hongtao2, LV Chenxi2, DONG Junhua1(), KE Wei3, HE Xiaoyan3
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Shenyang Research and Development Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(5035 KB)   HTML
摘要: 

通过与裸钢筋和完好涂层钢筋对比,研究了带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀演化行为。在表征环氧涂层组成与结构特征的基础上,采用CLSM及Raman光谱分析涂层损伤处的腐蚀形貌及产物组成;采用腐蚀电位与电化学阻抗谱监测腐蚀过程,揭示腐蚀演化动力学规律。结果表明,无预制损伤的环氧涂层对钢基体具有良好的保护作用,在6种Cl-及碳化侵蚀性环境中长期浸泡均未发生腐蚀。预制损伤涂层钢筋试样的腐蚀活化/钝化行为与未涂装的裸钢筋一致,均明显地受Cl-和碳化影响。在无Cl-且pH值为12.6和9.8的溶液中发生钝化;在无Cl-且pH值为9.2的溶液以及0.6 mol/L NaCl的不同pH值溶液中均发生活化溶解,且腐蚀速率随时间延长呈增加趋势。在不含Cl-溶液中,长期腐蚀后的腐蚀产物主要为α-FeOOH;而在不同pH值的含Cl-溶液中,其腐蚀产物除α-FeOOH之外,还含有β-FeOOH及少量Fe3O4。在Cl-和碳化耦合作用下,预制损伤涂层钢筋的腐蚀仅发生在损伤部位,腐蚀向基体深处扩展,不会造成其它部位涂层的剥离。

关键词 环氧涂层钢筋腐蚀演化Cl-碳化    
Abstract

It is unavoidable for coated steel bars to be scratched during transportation and construction, which will lead to the damage of coating and exposure of steel matrix. Consequently, the corrosion resistance of coated steel bars after damage will directly affect the durability of structures. The corrosion evolution behavior of damaged epoxy coated steel bars under the coupling action of chloride ion and carbonization was studied by comparing with bare steel bars and perfectly coated steel bars. On the basis of characterizing the composition and structural characteristics of epoxy coating, the corrosion morphology and product composition at the damage site of the coating were analyzed by CLSM and Raman spectroscopy, and the corrosion process was monitored by corrosion potential and electrochemical impedance spectroscopy to reveal the dynamic of corrosion evolution. The results show that the epoxy coating without damage has a good protective effect on steel matrix, and no corrosion occurs during long-term immersion in all six solutions including the chloride ions and carbonization corrosive environments. The corrosion activation or passivation behavior of damaged coated steel bars is consistent with that of uncoated bare bars, which is obviously affected by chloride ion and carbonization. Passivation occurs in the system without Cl- and with pH of 12.6 or 9.8. Activation dissolution occurs in the chloride-free system with pH of 9.2, and in the system of different pH values with 0.6 mol/L NaCl. In the active systems, the corrosion rate increases with time. In the chloride-free system, the corrosion products after long-term corrosion are mainly α-FeOOH, while in the chloride-containing system with different pH, the corrosion products contain not only α-FeOOH, but also β-FeOOH and a small amount of Fe3O4. Under the coupling action of chloride ion and carbonization, the corrosion of damaged coated steel bars occurs only in the damaged site, and the corrosion extends towards to the depth of the matrix, which will not cause the peeling of coatings in other sites.

Key wordsepoxy coated steel bar    corrosion evolution    chloride ion    carbonization
收稿日期: 2019-09-11     
ZTFLH:  TG172.2  
基金资助:国家自然科学基金项目(51501201);中国科学院A类战略性先导科技专项项目(XDA13040501);沈阳市重大科技成果转化项目(Z17-7-021)
通讯作者: 董俊华     E-mail: jhdong@imr.ac.cn
Corresponding author: DONG Junhua     E-mail: jhdong@imr.ac.cn
作者简介: 魏 洁,女,1980年生,副研究员,博士

引用本文:

魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
Jie WEI, Yinghua WEI, Jing LI, Hongtao ZHAO, Chenxi LV, Junhua DONG, Wei KE, Xiaoyan HE. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization. Acta Metall Sin, 2020, 56(6): 885-897.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00302      或      https://www.ams.org.cn/CN/Y2020/V56/I6/885

SolutionComposition / (mol·L-1)pH
NaOHKOHCa(OH)2Na2CO3NaHCO3NaClvalue
S10.020.060.00212.6
S20.020.060.0020.612.6
S30.0230.0349.8
S40.0230.0340.69.8
S50.00730.06579.2
S60.00730.06570.69.2
表1  腐蚀实验用溶液组成
图1  完好涂层钢筋试样表面形貌的SEM像
图2  完好涂层钢筋试样截面形貌的SEM像
图3  涂层的SEM-BSE像和EDS分析
图4  预制损伤涂层钢筋试样的SEM-SE和SEM-BSE像
图5  浸泡60 d后裸钢筋试样、涂层完好钢筋试样和涂层带损伤钢筋试样在S1~S6溶液中的腐蚀形貌
Steel sampleS1S2S3S4S5S6
BarePassivationActivationPassivationActivationActivationActivation
Intact coatedUnchangedUnchangedUnchangedUnchangedUnchangedUnchanged
Damaged coatedPassivationActivationPassivationActivationActivationActivation
表2  3种不同表面钢筋在6种溶液中浸泡60 d的腐蚀情况
图6  预制损伤涂层钢筋试样在S1~S6溶液中浸泡60 d后的CLSM三维立体形貌
图7  预制损伤涂层钢筋试样在S1~S6溶液中浸泡60 d后腐蚀坑纵截面轮廓图
图8  活化腐蚀体系S2、S4~S6中预制损伤涂层钢筋试样腐蚀坑中腐蚀产物的Raman光谱
图9  S1~S6溶液中预制损伤涂层钢筋试样的开路电位演化
图10  S1~S6溶液中预制损伤涂层钢筋试样的EIS结果
图11  S1~S6溶液EIS拟合用等效电路

Time

d

Rs

Ω·cm2

Qc-Y0

10-3 Ω-1·cm-2·s-n

nc

Rc

Ω·cm2

Qa-Y0

10-3 Ω-1·cm-2·s-n

na

Ra

Ω·cm2

χ2
02.201.040.9712681.470.7433978.78×10-4
12.181.170.971.487×1040.890.8062587.24×10-4
52.101.070.964.171×1040.890.8072769.17×10-4
202.400.850.947.250×1040.980.7691929.76×10-4
602.770.750.916.431×1041.090.7696658.01×10-4
表3  S1溶液EIS拟合结果

Time

d

Rs

Ω·cm2

Qc-Y0

10-3 Ω-1·cm-2·s-n

nc

Rc

Ω·cm2

Zw

10-3 Ω-1·cm-2·s-0.5

Qa-Y0

10-3 Ω-1·cm-2·s-n

na

Ra

Ω·cm2

χ2
00.4812.040.75618.906.821.140.821311.02.77×10-4
10.4613.490.76114.5013.491.750.77842.76.34×10-4
50.482.070.7352.8818.493.010.75211.36.06×10-4
200.555.830.709.7858.6011.740.7930.53.43×10-4
600.517.600.702.6768.8930.980.6622.41.11×10-4
表4  S2溶液EIS拟合结果

Time

d

Rs

Ω·cm2

Qc-Y0

10-3 Ω-1·cm-2·s-n

nc

Rc

Ω·cm2

Qa-Y0

10-3 Ω-1·cm-2·s-n

na

Ra

Ω·cm2

χ2
06.061.280.9716671.100.7651654.89×10-4
15.856.170.9740380.860.7854356.08×10-4
55.731.031.003.060×1040.560.8250858.55×10-4
205.300.931.003.036×1040.490.8367075.62×10-4
604.630.891.002.502×1040.440.8481621.81×10-4
表5  S3溶液EIS拟合结果

Time

d

Rs

Ω·cm2

Qc-Y0

10-3 Ω-1·cm-2·s-n

nc

Rc

Ω·cm2

Zw

10-3 Ω-1·cm-2·s-0.5

Qa-Y0

10-3 Ω-1·cm-2·s-n

na

Ra

Ω·cm2

χ2
00.937.210.7536.2413.8631.960.79277.802.26×10-4
10.9511.230.7328.8626.5422.300.76255.601.98×10-4
50.908.530.7223.4629.7342.220.80107.605.08×10-4
201.006.350.6913.4656.05197.900.6876.922.15×10-4
601.7210.890.427.5970.7672.730.9059.601.26×10-4
表6  S4溶液EIS抗拟合结果

Time

d

Rs

Ω·cm2

Qc-Y0

10-3 Ω-1·cm-2·s-n

nc

Rc

Ω·cm2

Zw

10-3 Ω-1·cm-2·s-0.5

Qa-Y0

10-3 Ω-1·cm-2·s-n

na

Ra

Ω·cm2

χ2
05.339.100.83477.506.383.060.731614.29.92×10-4
15.4710.400.7973.447.4924.650.41512.95.19×10-4
53.7978.030.7781.3210.8283.140.29467.42.19×10-4
202.87152.400.7676.148.5062.600.24187.62.03×10-4
602.6642.270.6869.358.6421.120.2470.62.57×10-4
表7  S5溶液EIS拟合结果

Time

d

Rs

Ω·cm2

Qc-Y0

10-3 Ω-1·cm-2·s-n

nc

Rc

Ω·cm2

Zw

10-3 Ω-1·cm-2·s-0.5

Qa-Y0

10-3 Ω-1·cm-2·s-n

na

Ra

Ω·cm2

χ2
00.452.880.8831.1947.333.830.80206.85.76×10-4
10.656.760.818.5473.5810.190.74261.83.53×10-4
50.726.450.8512.6362.4010.740.73258.34.92×10-4
200.893.140.8215.28100.1017.150.60229.27.98×10-4
602.420.830.8011.9545.2035.680.2987.93.75×10-4
表8  S6溶液EIS拟合结果
图12  6种溶液中Rc和Ra随时间变化
[1] Jin W L, Zhao Y X. Durability of Concrete Structures [M]. 2nd Ed., Beijing: Science Press, 2014: 15
[1] 金伟良, 赵羽习. 混凝土结构耐久性 [M]. 第2版,北京: 科学出版社, 2014: 15
[2] Morris W, Vazquez M. Corrosion of reinforced concrete exposed to marine environment [J]. Corros. Rev., 2002, 20: 469
doi: 10.1515/CORRREV.2002.20.6.469
[3] Moreno M, Moms W, Alvarez M G, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content [J]. Corros. Sci., 2004, 46: 2681
doi: 10.1016/j.corsci.2004.03.013
[4] Abd Elmoaty A E M. Four-years carbonation and chloride induced steel corrosion of sulfate-contaminated aggregates concrete [J]. Constr. Build. Mater., 2018, 163: 539
doi: 10.1016/j.conbuildmat.2017.12.128
[5] Wang X H, Gao Y. Corrosion behavior of epoxy-coated reinforced bars in RC test specimens subjected to pre-exposure loading and wetting-drying cycles [J]. Constr. Build. Mater., 2016, 119: 185
doi: 10.1016/j.conbuildmat.2016.05.066
[6] Zafeiropoulou T, Rakanta E, Batis G. Performance evaluation of organic coatings against corrosion in reinforced cement mortars [J]. Prog. Org. Coat., 2011, 72: 175
doi: 10.1016/j.porgcoat.2011.04.005
[7] Ahmad S, Al-Tholaia M M H. Evaluation of corrosion resistance of coated steel strips embedded in mortar under chloride exposure [J]. Anti-Corros. Methods Mater., 2015, 62: 29
doi: 10.1108/ACMM-10-2013-1301
[8] Cheng A, Huang R, Wu J K, et al. Effect of rebar coating on corrosion resistance and bond strength of reinforced concrete [J]. Constr. Build. Mater., 2005, 19: 404
doi: 10.1016/j.conbuildmat.2004.07.006
[9] Zhou Q, Shui Z H, Xiao Y D, et al. Effects of coating/electroplating on corrosion resistance of steel bar in reinforced concrete [J]. Adv. Mater. Res., 2012, 446-449: 3176
[10] Nguyen T, Martin J W. Modes and mechanisms for the degradation of fusion-bonded epoxy-coated steel in a marine concrete environment [J]. JCT Res., 2004, 1: 81
[11] Lau K, Sagüés A A. Corrosion of epoxy- and polymer/zinc-coated rebar in simulated concrete pore solution [J]. Corrosion, 2009, 65: 681
doi: 10.5006/1.3319095
[12] Venkatesan P, Palaniswamy N, Rajagopal K. Corrosion performance of coated reinforcing bars embedded in concrete and exposed to natural marine environment [J]. Prog. Org. Coat., 2006, 56: 8
doi: 10.1016/j.porgcoat.2006.01.011
[13] Tang F J, Chen G D, Brow R K. Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar [J]. Cem. Concr. Res., 2016, 82: 58
doi: 10.1016/j.cemconres.2015.12.015
[14] Singh D D N, Ghosh R. Unexpected deterioration of fusion-bonded epoxy-coated rebars embedded in chloride-contaminated concrete environments [J]. Corrosion, 2005, 61: 815
doi: 10.5006/1.3278216
[15] Pianca F, Schell H, Cautillo G. The performance of epoxy coated reinforcement: Experience of the Ontario ministry of transportation [J]. Int. J. Mater. Prod. Technol., 2005, 23: 286
[16] Montes P, Brernnor T W, Kondratova I. Eighteen-year performance of epoxy-coated rebar in a tunnel structure subjected to a very aggressive chloride-contaminated environment [J]. Corrosion, 2004, 60: 974
doi: 10.5006/1.3287832
[17] Ş Erdoğdu, Bremner T W, Kondratova I L. Accelerated testing of plain and epoxy-coated reinforcement in simulated seawater and chloride solutions [J]. Cem. Concr. Res., 2001, 31: 861
doi: 10.1016/S0008-8846(01)00487-2
[18] Elleithy W M, Sharif A M, Al-Amoudi O S B, et al. Effect of holidays and surface damage to FBEC on reinforcement corrosion [J]. Constr. Build. Mater., 1998, 12: 185
doi: 10.1016/S0950-0618(98)00004-X
[19] Keβler S, Angst U, Zintel M, et al. Defects in epoxy-coated reinforcement and their impact on the service life of a concrete structure: A study of critical chloride content and macro-cell corrosion [J]. Struct. Concr., 2015, 16: 398
doi: 10.1002/suco.v16.3
[20] Al-Dulaijan S U, Maslehuddin M, Shameem M, et al. Corrosion protection provided by chemical inhibitors to damaged FBEC bars [J]. Constr. Build. Mater., 2012, 29: 487
doi: 10.1016/j.conbuildmat.2011.10.009
[21] Cao F T, Wei J, Dong J H, et al. The corrosion inhibition effect of phytic acid on 20SiMn steel in simulated carbonated concrete pore solution [J]. Corros. Sci., 2015, 100: 365
doi: 10.1016/j.corsci.2015.08.020
[22] Zhao H T. Failure behavior of solvent-free epoxy coating in simulated dynamic sea water [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2016
[22] 赵洪涛. 无溶剂环氧防腐涂层在模拟动态海水中的失效行为 [D]. 沈阳: 中国科学院金属研究所, 2016
[23] de la Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
doi: 10.1016/j.corsci.2016.04.034
[24] Dubois F, Mendibide C, Pagnier T, et al. Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance [J]. Corros. Sci., 2008, 50: 3401
doi: 10.1016/j.corsci.2008.09.027
[25] Lu Y F, Dong J H, Ke W. Effects of Cl- ions on the corrosion behaviour of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2016, 32: 341
doi: 10.1016/j.jmst.2015.11.015
[26] Wei J, Fu X X, Dong J H, et al. Corrosion evolution of reinforcing steel in concrete under dry/wet cyclic conditions contaminated with chloride [J]. J. Mater. Sci. Technol., 2012, 28: 905
doi: 10.1016/S1005-0302(12)60149-2
[27] Wei J, Dong J H, Ke W. Corrosion evolution of scaled rebar in concrete under dry/wet cyclic condition in 3.5% NaCl solution [J]. Int. J. Electrochem. Sci., 2013, 8: 2536
[28] Liu B, Mu X, Yang Y, et al. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 1228
doi: 10.1016/j.jmst.2019.01.008
[29] Cao C N. Principles of Corrosion Electrochemistry [M]. 2nd Ed., Beijing: Chemistry Industry Press, 2004: 261
[29] 曹楚南. 腐蚀电化学原理 [M]. 第2版, 北京: 化学工业出版社, 2004: 261
[1] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[2] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[3] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[4] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[5] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[6] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
[7] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[8] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[9] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[10] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[11] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.
[12] 马颖澈,李硕,郝宪朝,查向东,高明,刘奎. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究*[J]. 金属学报, 2016, 52(8): 980-986.
[13] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[14] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[15] 丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.