Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1573-1580    DOI: 10.3724/SP.J.1037.2013.00509
  论文 本期目录 | 过刊浏览 |
电磁场对Inconel 625合金凝固组织及力学性能的影响
贾鹏,王恩刚,鲁辉,赫冀成
东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
EFFECT OF ELECTROMAGNETIC FIELD ON MICRO-STRUCTURE AND MECHANICAL PROPERTY FOR INCONEL 625 SUPERALLOY
JIA Peng, WANG Engang, LU Hui, HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
引用本文:

贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12): 1573-1580.
JIA Peng, WANG Engang, LU Hui, HE Jicheng. EFFECT OF ELECTROMAGNETIC FIELD ON MICRO-STRUCTURE AND MECHANICAL PROPERTY FOR INCONEL 625 SUPERALLOY[J]. Acta Metall Sin, 2013, 49(12): 1573-1580.

全文: PDF(3187 KB)  
摘要: 

将电磁场引入到Inconel 625合金的凝固过程中,研究电磁力对合金凝固组织和力学性能的影响. 结果表明,电磁场可显著细化合金晶粒, 但当施加不合理的电流强度和频率时,电磁场会加速凝固前沿的熔体对流, 导致凝固末端产生更严重的枝晶偏析,形成更多的共晶组织. 微观表征结果表明, 电磁场作用下Nb和Mo元素偏析比的增大,是共晶组织含量增多的根本原因.晶粒细化和共晶组织增多共同影响了合金的室温拉伸性能,使合金屈服强度提高、拉伸塑性下降.合理控制电流强度及频率大小可有效控制共晶组织分数.当施加电磁场的电流强度为100 A, 频率为8 Hz时, 合金中共晶组织含量最少,合金在不损失塑性的前提下屈服强度提高30%以上.

关键词 电磁场Inconel 625合金凝固组织枝晶偏析拉伸性能    
Abstract

Inconel 625 is a Ni—Cr—Mo—Nb alloy which was developed primarily for high turbine applications. The elemental addition of Nb increases the solidification temperature range, which exhibits a strong propensity to form interdendritic segregation. The enrichment of elements Nb and Mo at the terminal stage of solidification leads to the formation of brittle eutectic structure, i.e., γ+Laves phases, which becomes potential crack origin during the subsequent hot processing and application. The present work has demonstrated that, the introduction of electromagnetic field (EMF) to the solidification process of Inconel 625 alloy has the obvious effect on grain refinement. The EMF can also effectively influence the segregation ratio of Nb and Mo. However, the inappropriate application of electric current intensity and frequency will lead to more severe segregation of elements Nb and Mo, which causes the increment of eutectic structure volume fraction. Further analysis illustrates that both of the grain refinement and eutectic volume fraction control the tensile property at room temperature, increasing the yield strength and decreasing the tensile plasticity for Inconel 625 alloy. It has been proven that a proper selection of input current intensity (100 A) and frequency (8 Hz) can effectively dominate the segregation behavior during solidification process under EMF with more than 30% increase of yield strength and a minute loss of plasticity.

Key wordselectromagnetic field    Inconel 625 superalloy    solidification microstructure    interdendritic segregation    tensile property
收稿日期: 2013-08-25     
基金资助:

国家自然科学基金项目50834009和51104047, 高等学校学科创新引智计划项目B07015以及教育部科学技术研究重大项目311014

作者简介: 贾鹏, 女, 1980年生, 讲师, 博士

[1] Barker J F, Cox J D, Margolin E.  Met Prog, 1968; 93: 91

[2] Eiselstein H L, Tillack D J. In: Loria E A ed.,Superalloys 718,625, and Various Derivatives, Warrendale, PA: The Minerals, Metals & Materials Society, 1991: 1
[3] Yang W H, Chen W, Chang K M. In: Pollock T M ed.,  Superalloys 2000, Nashville: The Minerals,Metals & Materials Society, 2000: 75
[4] Cieslak M J, Headley T J, Kollie T, Romig A D.  Metall Mater Trans, 1988; 19A: 2319
[5] Dupont J N.  Metall Mater Trans, 1996; 27A: 3612
[6] Dong J X, Zhang M C, Zeng Y P, Xie X S.  Acta Metall Sin (Engl Lett), 2005; 18: 47
[7] Guo J T.  Materials Science and Engineering for Superalloys (Volume 2). Beijing: Science Press, 2008: 1
(郭建亭. 高温合金材料学(中册). 北京: 科学出版社, 2008: 1)
[8] Flemings M C.  Solidification Processing. New York: McGraw—Hill, 1974: 38
[9] Flemings M C.  ISIJ Int, 2000; 40: 833
[10] Xu F J, Lv Y H, Liu Y X, Shu F Y, He P, Xu B S.  J Mater Sci Technol, 2013; 29: 480
[11] Moffatt H K.  Phys Fluids, 1991; 3A: 1336
[12] Metana V, Eigenfelda K, R$\ddot{\rm a$bigerb D, Leonhardtb M, Eckertb S.J Alloys Compd, 2009; 487: 163
[13] Wang X D, Li T J, Jin J Z.  Acta Metall Sin, 2001; 37: 971
(王晓东, 李廷举, 金俊泽. 金属学报, 2001; 37: 971)
[14] Jin W Z, Li J, Li T J, Yin G M.  J Vac Sci Technol Sin, 2008; (6): 28
(金文中, 李军, 李廷举, 殷国茂. 真空科学与技术学报, 2008; (6): 28)
[15] Chang K M, Lai H J, Hwang J Y. In: Loria E A ed., Superalloys 718,625, and Various Derivatives, Nashville: The Minerals,Metals & Materials Society, 1994: 683
[16] Schneider M C, Gu J P, Beckermann C, Boettinger W J, Kattner U R.Metall Mater Trans, 1997; 28A: 1517
[17] Cieslak M J, Knorovsky G A, Headley T J, Romig A D. In: Loria E A ed.,Superalloys 718, Nashville: The Minerals, Metals $\&$ Materials Society, 1989: 59
[18] Garabedian H, Strick—Constable R F J.  J Cryst Growth, 1974; 22: 188
[19] Xin X, Huang A H, Qi F, Zhang W H, Liu F, Yang H C, Sun W R, Hu Z Q.Acta Metall Sin, 2010; 46: 873
(信昕, 黄爱华, 祁峰, 张伟红, 刘芳, 杨洪才, 孙文儒, 胡壮麒. 金属学报,2010; 46: 873)
[20] Guo D Y, Yang Y S, Tong W H, Hua F A, Cheng G F, Hu Z Q.  Acta Metall Sin, 2003; 39: 914
(郭大勇, 杨院生, 童文辉, 花福安, 程根发, 胡壮麒. 金属学报, 2003; 39: 914)
[21] Xiong Y H, Li P J, Yang A M, Yan W D, Zeng D B, Liu L.  Acta Metall Sin, 2002, 38: 534
(熊玉华, 李培杰, 杨爱民, 严卫东, 曾大本, 刘林. 金属学报, 2002; 38: 534)
[22] Epishin A, Link T, Bruckner U, Fedelich B, Portella P. In: Green K A ed.,Superalloys 718, Nashville: The Minerals, Metals & Materials Society, 2004: 537
[23] Nader E B, Yamamoto K, Miyahara H, Keisaku O.  Mater Trans, 2005; 46: 909
[24] Chen W.  PhD Dissertation, West Virginia University, 2006

[25] Kaddah N E, Natarajan T T. In: Cleary P W ed.,Second International Conference on CFD in the Minerals and Process Industries, Melbourne: CSIRO, 1999: 339

[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[3] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[4] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[5] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[6] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[7] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[8] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[10] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[11] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[12] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[13] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[14] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[15] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.