Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 435-442    DOI: 10.11900/0412.1961.2017.00251
  本期目录 | 过刊浏览 |
坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响
刘政1(), 陈志平1, 陈涛2
1 江西理工大学机电工程学院 赣州 341000
2 江西理工大学材料科学与工程学院 赣州 341000
Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry
Zheng LIU1(), Zhiping CHEN1, Tao CHEN2
1 School of Mechanical and Electronic Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
引用本文:

刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. Acta Metall Sin, 2018, 54(3): 435-442.

全文: PDF(3278 KB)   HTML
摘要: 

采用数值模拟方法,通过改变坩埚长短轴比例R和电磁搅拌频率研究半固态A356铝合金浆料的流动规律,以及R对半固态A356铝合金浆料初生相组织的影响。结果表明:随着R增大,半固态A356铝合金在短轴上所受的最大电磁力和最大流速呈先增大后减小的趋势,在长轴上所受的最大电磁力和最大流速呈先增大后减小再增大的现象;频率越高,短轴和长轴上所受的电磁力差和流速差越明显,因而可使熔体流动时出现“加速-减速-加速”的循环运动现象。当电磁频率和R分别为30 Hz和1.1时,坩埚长轴和短轴上的最大流速分别为153.6和143.2 mm/s,流速差最小,此时可制备出较优的半固态A356铝合金浆料。

关键词 半固态铝合金坩埚尺寸电磁频率流速数值模拟    
Abstract

A356 aluminum alloy has been widely used in semisolid processing because of its wide range of liquidus and solidus temperatures. The flow of the melt during solidification has a certain influence on the composition, solute distribution, phase morphology and crystal defects of the alloy in the solidification structure. The flow of melt is an important factor that influences the overall performance of the solidification process. The researchers use various external fields to act on the melt to induce the melt flow. Electromagnetic stirring has the characteristics of no contact, no pollution, light oxidation, less gas content and easy to control stirring parameters. It is the most popular method to fabricate semisolid alloy slurry. The electromagnetic force of the electromagnetic field can be used to study the flow phenomena of the melt. Numerical simulation combined with experimental research can get better results. The effects of crucible size and electromagnetic frequency on flow during fabrication of semisolid A356 aluminum alloy slurry under electromagnetic stirring through numerical simulation as well as the influence of crucible size on the primary phase of semisolid A356 aluminum alloy slurry induced by electromagnetic field were investigated. The results show that with the increasing of the major and minor axial ratio of crucible (R), the maximum electromagnetic force and maximum flow rate of the semisolid A356 aluminum alloy at the minor axis firstly increase and then decrease, and the maximum electromagnetic force and maximum flow rate of the semisolid A356 aluminum alloy at the major axis increase first, then decrease and then increase. The higher the electromagnetic frequency, the electromagnetic force difference and the flow rate difference of the semisolid A356 aluminum alloy at the minor axis and the major axis are apparent, so that occurs the phenomenon of "acceleration-deceleration-acceleration" in the melt flow. When the electromagnetic frequency and R are 30 Hz and 1.1 respectively, the maximum flow rate at the major axis and the minor axis of the crucible are 153.6 and 143.2 mm/s respectively, and the flow rate difference is the smallest, better semisolid A356 aluminum alloy slurry can be fabricated at this condition.

Key wordssemisolid aluminum alloy    crucible size    electromagnetic frequency    flow rate    numerical simulation
收稿日期: 2017-06-26     
基金资助:资助项目 国家自然科学基金项目Nos.51144009和51361012,江西省自然科学基金项目No.20142bab206012以及江西省教育厅科技项目No.GJJ14407
作者简介:

作者简介 刘 政,男,1958年生,教授,博士

图1  不同坩埚长短轴比例R下的模型和网格划分
图2  计算流程示意图
图3  不同R和电磁频率下的最大电磁力
R 10 Hz 20 Hz 30 Hz 40 Hz
1.0 638.1 760.9 802.0 820.3
1.1 685.0 817.6 849.9 856.3
1.2 682.6 866.1 931.8 962.7
1.3 1928.8 2398.3 2580.6 2673.9
表1  不同R和电磁频率下长短轴上的电磁力差
图4  不同R和电磁频率下的最大流速
R 10 Hz 20 Hz 30 Hz 40 Hz
1.0 22.4 22.5 22.7 22.6
1.1 8.8 9.9 10.3 10.6
1.2 18.6 21.3 22.1 22.4
1.3 39.2 41.7 41.7 41.4
表2  不同R和电磁频率下长短轴上的流速差
图5  不同R下半固态A356合金初生相形貌的OM像
图6  不同R下半固态A356合金的初生相的平均等积圆直径D和平均形状因子F
[1] Kang C G, Bae J W, Kim B M. The grain size control of A356 aluminum alloy by horizontal electromagnetic stirring for rheology forging [J]. J. Mater. Process. Technol., 2007, 187-188: 344
[2] Chung I G, Bolouri A, Kang C G.A study on semisolid processing of A356 aluminum alloy through vacuum-assisted electromagnetic stirring[J]. Int. J. Adv. Manuf. Technol., 2012, 58: 237
[3] Liu Z, Mao W M, Zhao Z D.Effect of pouring temperature on semi-solid slurry of A356 Al alloy prepared by weak electromagnetic stirring[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 71
[4] Barman N, Kumar P, Dutta P.Studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring[J]. J. Mater. Process. Technol., 2009, 209: 5912
[5] Dao V L, Zhao S D, Lin W J.Numerical and experimental study on effect of process parameters on preparation of A356 aluminum alloy semi-solid slurry by electromagnetic stirring[J]. Int. J. Appl. Electrom., 2013, 41: 153
[6] Zhang Z F, Chen X R, Xu J, et al.Numerical simulation on electromagnetic field, flow field and temperature field in semisolid slurry preparation by A-EMS[J]. Rare Met., 2010, 29: 635
[7] Liu Z, Zhang J Y.Research on morphology evolution of different rare-earth elements on primary phase in semisolid aluminum alloy under chaotic advection[J]. J. Mech. Eng., 2016, 52(16): 77(刘政, 张嘉艺. 混沌对流中不同稀土元素对半固态铝合金初生相形貌研究 [J]. 机械工程学报, 2016, 52(16): 77)
[8] Xu J F, Wei B B.Liquid phase flow and microstructure formation during rapid solidification[J]. Acta. Phys. Sin., 2004, 53: 1909(徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律 [J]. 物理学报, 2004, 53: 1909)
[9] Wang J, Zhou Y, Lan S, et al.Numerical simulation and chaotic analysis of an aluminum holding furnace[J]. Metall. Mater. Trans., 2014, 45B: 2194
[10] Liu Z, Liu X M, Hu C H, et al.Research on fractal characteristics of primary phase morphology in semi-solid A356 alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2009, 22: 421
[11] Hu Z H, Wu G H, Zhang P, et al.Primary phase evolution of rheo-processed ADC12 aluminum alloy[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 19
[12] Nikrityuk P A, Eckert K, Grundmann R.A numerical study of unidirectional solidification of a binary metal alloy under influence of a rotating magnetic field[J]. Int. J. Heat Mass Transfer, 2006, 49: 1501
[13] Dadzis K, Lukin G, Meier D, et al.Directional melting and solidification of gallium in a traveling magnetic field as a model experiment for silicon processes[J]. J. Cryst. Growth, 2016, 445: 90
[14] Zhao J Z, Li H L, Zhao L.Effects of convections and motions of minority phase droplets on solidification of monotectic alloys[J]. Acta Metall. Sin., 2009, 45: 1435(赵九洲, 李海丽, 赵雷. 对流和弥散相液滴运动对偏晶合金凝固的影响 [J]. 金属学报, 2009, 45: 1435)
[15] Wang J, Fautrelle Y, Nguyen-Thi H, et al.Thermoelectric magnetohydrodynamic flows and their induced change of solid-liquid interface shape in static magnetic field-assisted directional solidification[J]. Metall. Mater. Trans., 2016, 47A: 1169
[16] Wang B, Wang X D, Etay J, et al.Flow driven by an archimedean helical permanent magnetic field. Part I: Flow patterns and their transitions[J]. Metall. Mater. Trans., 2016, 47B: 1369
[17] Chowdhury J, Ganguly S, Chakraborty S.Numerical simulation of transport phenomena in electromagnetically stirred semi-solid materials processing[J]. J. Phys., 2005, 38D: 2869
[18] Chen X R, Zhang Z F, Xu J, et al.Numerical simulation of electromagnetic field, flow field and temperature field in semi-solid slurry preparation by electromagnetic stirring[J]. Chin. J. Nonferrous Met., 2010, 20: 937(陈兴润, 张志峰, 徐骏等. 电磁搅拌法制备半固态浆料过程电磁场、流场和温度场的数值模拟 [J]. 中国有色金属学报, 2010, 20: 937)
[19] Tao W Y, Zhao S D, Lin W J.Numerical simulation on A356 aluminum alloy semi-solid slurry preparation with electromagnetic stirring[J]. J. Mech. Eng., 2012, 48(14): 50(陶文琉, 赵升吨, 林文捷. A356铝合金半固态浆料电磁搅拌法制备过程的数值模拟 [J]. 机械工程学报, 2012, 48(14): 50)
[20] Liu Z, Zhang J Y, Yu Z F.Simulation and analysis on chaotic characteristic of flow in Al alloy melt under electromagnetic field[J]. Chin. J. Nonferrous Met., 2015, 25: 3026(刘政, 张嘉艺, 余昭福. 电磁场作用下中铝合金熔体流动的混沌特征的仿真与分析 [J]. 中国有色金属学报, 2015, 25: 3026)
[21] Liu Z, Liu X M, Zhu T, et al.Effects of electromagnetic stirring with low current frequency on RE distribution in semisolid aluminum alloy[J]. Acta Metall. Sin., 2015, 51: 272(刘政, 刘小梅, 朱涛等. 低频电磁搅拌对半固态铝合金中稀土分布的影响 [J]. 金属学报, 2015, 51: 272)
[22] Liu Z, Zhang J Y, Luo H L, et al.Research on morphology evolution of primary phase in semisolid A356 alloy under chaotic advection[J]. Acta Metall. Sin., 2016, 52: 177(刘政, 张嘉艺, 罗浩林等. 混沌对流下的半固态A356铝合金初生相形貌演变研究 [J]. 金属学报, 2016, 52: 177)
[23] Yin J F, You Y X, Li W, et al.Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force[J]. Acta Phys. Sin., 2014, 63: 206(尹纪富, 尤云祥, 李巍等. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析 [J]. 物理学报, 2014, 63: 206)
[24] Bai X W, Zhang H O, Zhou X M, et al.Electromagneto-fluid coupling simulation of arc rapid prototyping process with external high-frequency magnetic field[J]. J. Mech. Eng., 2016, 52(4): 60(柏兴旺, 张海鸥, 周祥曼等. 外加高频磁场下电弧快速成形过程的电磁-流体耦合数值模拟 [J]. 机械工程学报, 2016, 52(4): 60)
[25] Wang C Z, Liu F G, Zhang Y T, et al.Numerical simulation on electromagnetic, thermal and fluid fields in preparing process of semi-solid slurry[J]. J. Shenyang Univ. Technol., 2010, 32: 279(王承志, 刘凤国, 张玉妥等. 半固态浆料制备过程的电磁热流体数值模拟 [J]. 沈阳工业大学学报, 2010, 32: 279)
[26] Liu H P, Xu M G, Qiu S T, et al.Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring[J]. Metall. Mater. Trans., 2012, 43B: 1657
[27] Zhao Q, Zhang X G, Zhang H Y, et al.Numerical simulation of spiral magnetic field of electromgnetic stirring[J]. Chin. J. Nonferrous Met., 2014, 24: 1041(赵倩, 张兴国, 张环月等. 螺旋磁场电磁搅拌的数值模拟 [J]. 中国有色金属学报, 2014, 24: 1041)
[28] Zhang J, Wang E G, Deng A Y, et al.Effects of mold EMS parameters on distributions of magnetic induction and electromagnetic force during continuous casting[J]. J. Northeastern Univ.(Nat. Sci.), 2010, 31: 1432(张 静, 王恩刚, 邓安元等. 连铸结晶器电磁搅拌参数对磁场分布的影响 [J]. 东北大学学报(自然科学版), 2010, 31: 1432)
[29] Li N, Zhang R, Zhang L M, et al.Study on grain refinement mechanism of hypoeutectic Al-7%Si alloy under low voltage alternating current pulse[J]. Acta Metall. Sin., 2017, 53: 192(李宁, 张蓉, 张利民等. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究 [J]. 金属学报, 2017, 53: 192)
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] 郑锦灿, 刘润聪, 王晓东. 热镀锌工艺中锌液表面流速的在线电磁测量[J]. 金属学报, 2020, 56(7): 929-936.
[11] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[12] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[13] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[15] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.