|
|
可降解锌基生物材料的研究进展 |
王鲁宁1,2( ), 孟瑶1, 刘丽君1, 董超芳2,3, 岩雨3 |
1 北京科技大学材料科学与工程学院 北京 100083 2 北京科技大学新金属材料国家重点实验室 北京 100083 3 北京科技大学新材料技术研究院 北京 100083 |
|
Research Progress on Biodegradable Zinc-Based Biomaterials |
Luning WANG1,2( ), Yao MENG1, Lijun LIU1, Chaofang DONG2,3, Yu YAN3 |
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 3 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
王鲁宁, 孟瑶, 刘丽君, 董超芳, 岩雨. 可降解锌基生物材料的研究进展[J]. 金属学报, 2017, 53(10): 1317-1322.
Luning WANG,
Yao MENG,
Lijun LIU,
Chaofang DONG,
Yu YAN.
Research Progress on Biodegradable Zinc-Based Biomaterials[J]. Acta Metall Sin, 2017, 53(10): 1317-1322.
[1] | Grüntzig A, Vetter W, Meier B, et al.Treatment of renovascular hypertension with percutaneous transluminal dilatation of a renal-artery stenosis[J]. Lancet, 1978, 311: 801 | [2] | Lukenda J, Biocina-Lukenda D.Stent, endovascular prosthesis, net or strut? What would British dentist Charles Stent (1807-1885) have to say on all this?[J]. Lijec Vjesn, 2009, 131: 30 | [3] | Saito S.New horizon of bioabsorbable stent[J]. Catheter. Cardio. Int., 2005, 66: 595 | [4] | Moravej M, Mantovani D.Biodegradable metals for cardiovascular stent application: Interests and new opportunities[J]. Int. J. Mol. Sci., 2011, 12: 4250 | [5] | SSYLVIA Study Investigators.Stenting of symptomatic atherosclerotic lesions in the vertebral or intracranial arteries (SSYLVIA)[J]. Stroke, 2004, 35: 1388 | [6] | Palmerini T, Benedetto U, Biondizoccai G, et al.Long-term safety of drug-eluting and bare-metal stents: Evidence from a comprehensive network meta-analysis[J]. J. Am. Coll. Cardiol., 2015, 65: 2496 | [7] | Farooq V, Gogas B D, Serruys P W.Restenosis: Delineating the numerous causes of drug-eluting stent restenosis[J]. Circ. Cardiovasc. Interv., 2011, 4: 195 | [8] | Nishio S, Kosuga K, Igaki K, et al.Long-term (> 10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents clinical perspective[J]. Circulation., 2012, 125: 2343 | [9] | Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta. Biomater., 2010, 6: 1705 | [10] | Kuhlmann J, Bartsch I, Willbold E, et al.Fast escape of hydrogen from gas cavities around corroding magnesium implants[J]. Acta. Biomater., 2013, 9: 8714 | [11] | Seitz J M, Durisin M, Goldman J, et al.Recent advances in biodegradable metals for medical sutures: A critical review[J]. Adv. Healthc. Mater., 2015, 4: 1915 | [12] | Frederickson C J, Koh J Y, Bush A I.The neurobiology of zinc in health and disease[J]. Nat. Rev. Neurosci., 2005, 6: 449 | [13] | Chen W Q.The trace element zinc and human body's care[J]. stud. Trace Elem. Health., 2006, 23: 62(陈文强. 微量元素锌与人体健康[J]. 微量元素与健康研究, 2006, 23: 62) | [14] | Qiu Q Q, Zhang Y, Xiong Y B, et al.Influence of zinc deficiency on children's health[J]. GD Trace Elem. Sci., 2011, 18: 14(邱清权, 张勇, 熊玉宝等. 缺锌对儿童健康的影响[J]. 广东微量元素科学, 2011, 18: 14) | [15] | Trumbo P, Yates A A, Schlicker S, et al.Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc[J]. J Am. Diet. Assoc., 2001, 101: 294 | [16] | Hennig B, Toborek M, McClain C J. Antiatherogenic properties of zinc: Implications in endothelial cell metabolism[J]. Nutrition., 1996, 12: 711 | [17] | Wu W, Gastaldi D, Yang K, et al.Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels[J]. Mater. Sci. Eng., 2011, B176: 1733 | [18] | Bowen P K, Shearier E R, Zhao S, et al.Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn alloys[J]. Adv. Healthc. Mater., 2016, 5: 1121 | [19] | Zhang S X, Zhang X N, Zhao C L, et al.Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater., 2010, 6: 626 | [20] | Guillory R J, Bowen P K, Hopkins S P, et al.Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants[J]. ACS Biomater. Sci. Eng., 2016, 2: 2355 | [21] | Zhao S, McNamara C T, Bowen P K, et al. Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling[J]. Metall. Mater. Trans., 2017, 48A: 1204 | [22] | Zhao S, Seitz J M, Eifler R, et al.Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat[J]. Mater. Sci. Eng., 2017, C76: 301 | [23] | Niu J L, Tang Z B, Huang H, et al.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J]. Mater. Sci. Eng., 2016, C69: 407 | [24] | Tang Z B, Huang H, Niu J L, et al.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J]. Mater. Des., 2017, 117: 84 | [25] | Sikora-Jasinska M, Mostaed E, Mostaed A, et al.Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn Ag alloys for degradable implant applications[J]. Mater. Sci. Eng., 2017, C77: 1170 | [26] | Li H F, Xie X H, Zheng Y F, et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. Sci. Rep., 2015, 5: 10719 | [27] | Li H F, Yang X H, Zheng Y F, et al.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J]. Mater. Des., 2015, 83: 95 | [28] | Dambatta M S, Izman S, Kurniawan D, et al.Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material[J]. Mater. Des., 2015, 85: 431 | [29] | Chen Y Q, Zhang W T, Maitz M F, et al.Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline[J]. Corros. Sci., 2016, 111: 541 | [30] | T?rne K, Larsson M, Norlin A, et al.Degradation of zinc in saline solutions, plasma, and whole blood[J]. J Biomed Mater Res., 2015, 104: 1141 | [31] | Liu X W, Sun J K, Yang Y H, et al.In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material[J]. Mater. Lett. , 2015, 161: 53 | [32] | Shearier E R, Bowen P K, He W L, et al.In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc[J]. ACS Biomater. Sci. Eng., 2016, 2: 634 | [33] | T?rne K, ?rnberg A, Weissenrieder J.Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments[J]. Acta. Biomater., 2017, 48: 541 | [34] | Xiang R, Ding D B, Fan L L, et al.Antibacterial mechanism and safety of zinc oxide[J]. Chin. J. Tissue Eng. Res., 2014, 18: 470(项荣, 丁栋博, 范亮亮等. 氧化锌的抗菌机制及其安全性研究进展[J]. 中国组织工程研究, 2014, 18: 470) | [35] | Zhang B, Zhou P Y, Qiu C, et al.Experimental study on the antibacterial property and cytocompatibility of medical biodegradable zinc alloy materials in vitro[J]. Chin. J. Injury Repair Wound Healing, 2016, 11: 191(张波, 周潘宇, 邱超等. 医用可降解锌合金材料抗菌性能及细胞相容性的体外实验研究[J]. 中华损伤与修复杂志(电子版), 2016, 11: 191) | [36] | Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577 | [37] | Zberg B, Uggowitzer P J, L?ffler J F.MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants[J]. Nat. Mater., 2009, 8: 887 | [38] | Bowen P K, Guillory R J, Shearier E R, et al.Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J]. Mater. Sci. Eng., 2015, C56: 467 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|