Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1317-1322    DOI: 10.11900/0412.1961.2017.00289
  研究论文 本期目录 | 过刊浏览 |
可降解锌基生物材料的研究进展
王鲁宁1,2(), 孟瑶1, 刘丽君1, 董超芳2,3, 岩雨3
1 北京科技大学材料科学与工程学院 北京 100083
2 北京科技大学新金属材料国家重点实验室 北京 100083
3 北京科技大学新材料技术研究院 北京 100083
Research Progress on Biodegradable Zinc-Based Biomaterials
Luning WANG1,2(), Yao MENG1, Lijun LIU1, Chaofang DONG2,3, Yu YAN3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

王鲁宁, 孟瑶, 刘丽君, 董超芳, 岩雨. 可降解锌基生物材料的研究进展[J]. 金属学报, 2017, 53(10): 1317-1322.
Luning WANG, Yao MENG, Lijun LIU, Chaofang DONG, Yu YAN. Research Progress on Biodegradable Zinc-Based Biomaterials[J]. Acta Metall Sin, 2017, 53(10): 1317-1322.

全文: PDF(800 KB)   HTML
摘要: 

Zn作为人体必需的微量元素,具有理论适中的降解速率和降解行为,因此在近年来,成为继镁合金与铁合金后的一种新的可降解医用植入材料。锌合金的设计、加工制备以及降解机理的研究刚处于起步阶段,尚未形成系统性的研究成果。本文就目前可降解锌合金的研究现状及未来的研究方向进行综述。

关键词 锌合金植入材料生物相容性降解    
Abstract

In recent years, zinc, as an essential trace element, with its alloys has attracted increasing attention as new biodegradable metals because of its appropriate degradation rate and degradation behavior. In this stage, it appears that the fabrication and degradation mechanism of zinc alloys as biodegradable metal still needs abundant systematic study. This review summarizes progress towards biodegradable zinc alloys. It emphasizes the current understanding of physiological and biological benefits of zinc and its biocompatibility. Finally, the review provides an outlook on challenges in designing zinc-based stents of optimal mechanical properties and biodegradation rate.

Key wordszinc alloy    implantation    biocompatibility    degradation
收稿日期: 2017-07-12     
ZTFLH:  TG146.13  
基金资助:国家重点研发计划项目No.2016YFC251100
作者简介:

作者简介 王鲁宁,男,1980年生,博士,教授

Alloy Standard electrode Essential Intake of Effect on local Expected gaseous
potential (vs SCE) for trace element pH during corrosion product
pure matrix metal / V element (mgd-1) degradation
Fe alloy -0.44 Yes 6.0~20.0 Alkalescent None
Mg alloy -2.37 Yes 375~500 Alkalescent Hydrogen
Zn alloy -0.763 Yes 2.0~10.0 Alkalescent None
表1  主要的用于可降解金属支架的材料主要性能[11]
Alloy Phase State Ultimate tensile Elongation Yield strength Ref.
strength / MPa % MPa
Zn-2Li Zn, LiZn4 Rolled 370 14.3 245 [21]
Zn-4Li 450 14 425
Zn-6Li 560 2 470
Zn-0.1Li Zn, LiZn4 Extruded 274±61 17±7 [22]
Zn-4Cu Zn, CuZn5 Extruded 270±10 51±2 250±10 [23]
Zn-Cu-0.1Mg Zn, CuZn5, Mg2Zn11 Extruded 380 8 345 [24]
Zn-xAg Zn, AgZn3 Extruded 203~287 32~39 150~242 [25]
(x=2.5, 5.0, 7.0)
Zn-1Ca Zn, CaZn13 Rolled 250 13 220 [26]
Zn-1Mg Zn, MgZn2 Rolled 240 12 190
Zn-1Sr Zn, SrZn13 Rolled 185 19.6 230
Zn-1Mg-1Ca Zn, CaZn13, MgZn2 Rolled 197 8.5 138 [27]
Zn-1Mg-1Sr Zn, SrZn13, MgZn2 Rolled 200 9.5 140
Zn-1Ca-1Sr Zn, SrZn13, CaZn13 Rolled 202 9 142
Zn-3Mg Zn, Mg2Zn11 Rolled 104 2.3 [28]
Homogenized 88 8.8
表2  锌合金的力学性能[21-28]
[1] Grüntzig A, Vetter W, Meier B, et al.Treatment of renovascular hypertension with percutaneous transluminal dilatation of a renal-artery stenosis[J]. Lancet, 1978, 311: 801
[2] Lukenda J, Biocina-Lukenda D.Stent, endovascular prosthesis, net or strut? What would British dentist Charles Stent (1807-1885) have to say on all this?[J]. Lijec Vjesn, 2009, 131: 30
[3] Saito S.New horizon of bioabsorbable stent[J]. Catheter. Cardio. Int., 2005, 66: 595
[4] Moravej M, Mantovani D.Biodegradable metals for cardiovascular stent application: Interests and new opportunities[J]. Int. J. Mol. Sci., 2011, 12: 4250
[5] SSYLVIA Study Investigators.Stenting of symptomatic atherosclerotic lesions in the vertebral or intracranial arteries (SSYLVIA)[J]. Stroke, 2004, 35: 1388
[6] Palmerini T, Benedetto U, Biondizoccai G, et al.Long-term safety of drug-eluting and bare-metal stents: Evidence from a comprehensive network meta-analysis[J]. J. Am. Coll. Cardiol., 2015, 65: 2496
[7] Farooq V, Gogas B D, Serruys P W.Restenosis: Delineating the numerous causes of drug-eluting stent restenosis[J]. Circ. Cardiovasc. Interv., 2011, 4: 195
[8] Nishio S, Kosuga K, Igaki K, et al.Long-term (> 10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents clinical perspective[J]. Circulation., 2012, 125: 2343
[9] Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta. Biomater., 2010, 6: 1705
[10] Kuhlmann J, Bartsch I, Willbold E, et al.Fast escape of hydrogen from gas cavities around corroding magnesium implants[J]. Acta. Biomater., 2013, 9: 8714
[11] Seitz J M, Durisin M, Goldman J, et al.Recent advances in biodegradable metals for medical sutures: A critical review[J]. Adv. Healthc. Mater., 2015, 4: 1915
[12] Frederickson C J, Koh J Y, Bush A I.The neurobiology of zinc in health and disease[J]. Nat. Rev. Neurosci., 2005, 6: 449
[13] Chen W Q.The trace element zinc and human body's care[J]. stud. Trace Elem. Health., 2006, 23: 62(陈文强. 微量元素锌与人体健康[J]. 微量元素与健康研究, 2006, 23: 62)
[14] Qiu Q Q, Zhang Y, Xiong Y B, et al.Influence of zinc deficiency on children's health[J]. GD Trace Elem. Sci., 2011, 18: 14(邱清权, 张勇, 熊玉宝等. 缺锌对儿童健康的影响[J]. 广东微量元素科学, 2011, 18: 14)
[15] Trumbo P, Yates A A, Schlicker S, et al.Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc[J]. J Am. Diet. Assoc., 2001, 101: 294
[16] Hennig B, Toborek M, McClain C J. Antiatherogenic properties of zinc: Implications in endothelial cell metabolism[J]. Nutrition., 1996, 12: 711
[17] Wu W, Gastaldi D, Yang K, et al.Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels[J]. Mater. Sci. Eng., 2011, B176: 1733
[18] Bowen P K, Shearier E R, Zhao S, et al.Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn alloys[J]. Adv. Healthc. Mater., 2016, 5: 1121
[19] Zhang S X, Zhang X N, Zhao C L, et al.Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater., 2010, 6: 626
[20] Guillory R J, Bowen P K, Hopkins S P, et al.Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants[J]. ACS Biomater. Sci. Eng., 2016, 2: 2355
[21] Zhao S, McNamara C T, Bowen P K, et al. Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling[J]. Metall. Mater. Trans., 2017, 48A: 1204
[22] Zhao S, Seitz J M, Eifler R, et al.Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat[J]. Mater. Sci. Eng., 2017, C76: 301
[23] Niu J L, Tang Z B, Huang H, et al.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J]. Mater. Sci. Eng., 2016, C69: 407
[24] Tang Z B, Huang H, Niu J L, et al.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J]. Mater. Des., 2017, 117: 84
[25] Sikora-Jasinska M, Mostaed E, Mostaed A, et al.Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn Ag alloys for degradable implant applications[J]. Mater. Sci. Eng., 2017, C77: 1170
[26] Li H F, Xie X H, Zheng Y F, et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. Sci. Rep., 2015, 5: 10719
[27] Li H F, Yang X H, Zheng Y F, et al.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J]. Mater. Des., 2015, 83: 95
[28] Dambatta M S, Izman S, Kurniawan D, et al.Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material[J]. Mater. Des., 2015, 85: 431
[29] Chen Y Q, Zhang W T, Maitz M F, et al.Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline[J]. Corros. Sci., 2016, 111: 541
[30] T?rne K, Larsson M, Norlin A, et al.Degradation of zinc in saline solutions, plasma, and whole blood[J]. J Biomed Mater Res., 2015, 104: 1141
[31] Liu X W, Sun J K, Yang Y H, et al.In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material[J]. Mater. Lett. , 2015, 161: 53
[32] Shearier E R, Bowen P K, He W L, et al.In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc[J]. ACS Biomater. Sci. Eng., 2016, 2: 634
[33] T?rne K, ?rnberg A, Weissenrieder J.Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments[J]. Acta. Biomater., 2017, 48: 541
[34] Xiang R, Ding D B, Fan L L, et al.Antibacterial mechanism and safety of zinc oxide[J]. Chin. J. Tissue Eng. Res., 2014, 18: 470(项荣, 丁栋博, 范亮亮等. 氧化锌的抗菌机制及其安全性研究进展[J]. 中国组织工程研究, 2014, 18: 470)
[35] Zhang B, Zhou P Y, Qiu C, et al.Experimental study on the antibacterial property and cytocompatibility of medical biodegradable zinc alloy materials in vitro[J]. Chin. J. Injury Repair Wound Healing, 2016, 11: 191(张波, 周潘宇, 邱超等. 医用可降解锌合金材料抗菌性能及细胞相容性的体外实验研究[J]. 中华损伤与修复杂志(电子版), 2016, 11: 191)
[36] Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[37] Zberg B, Uggowitzer P J, L?ffler J F.MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants[J]. Nat. Mater., 2009, 8: 887
[38] Bowen P K, Guillory R J, Shearier E R, et al.Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J]. Mater. Sci. Eng., 2015, C56: 467
[1] 王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.
[2] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[3] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[4] 钱漪, 袁广银. 可降解锌合金血管支架的研究现状、面临的挑战与对策思考[J]. 金属学报, 2021, 57(3): 272-282.
[5] 郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520.
[6] 马政, 陆喜, 高明, 谭丽丽, 杨柯. 缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响[J]. 金属学报, 2018, 54(7): 1010-1018.
[7] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[8] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.
[9] 梁春永, 郝静祖, 王洪水, 李宝娥, 夏丹. 金属植介入器件接触诱导表面的制备技术与研究进展[J]. 金属学报, 2017, 53(10): 1265-1283.
[10] 赵德伟, 李军雷. 多孔Ta的制备及其作为骨植入材料的应用进展[J]. 金属学报, 2017, 53(10): 1303-1310.
[11] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[12] 东家慧, 谭丽丽, 杨柯. 可降解镁基金属骨缺损修复材料的研究探索[J]. 金属学报, 2017, 53(10): 1197-1206.
[13] 张小农, 左敏超, 张绍翔, 吴宏流, 王文辉, 陈文智, 倪嘉桦. 医用可降解血管支架临床研究进展[J]. 金属学报, 2017, 53(10): 1215-1226.
[14] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
[15] 奚廷斐, 魏利娜, 刘婧, 刘小丽, 甄珍, 郑玉峰. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53(10): 1153-1167.