|
|
可降解锌合金血管支架的研究现状、面临的挑战与对策思考 |
钱漪1,2, 袁广银1( ) |
1.上海交通大学 轻合金精密成型国家工程研究中心和金属基复合材料国家重点实验室 上海 200240 2.上海交通大学医学院附属瑞金医院 心血管内科 上海 200025 |
|
Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents |
QIAN Yi1,2, YUAN Guangyin1( ) |
1.National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China 2.Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China |
引用本文:
钱漪, 袁广银. 可降解锌合金血管支架的研究现状、面临的挑战与对策思考[J]. 金属学报, 2021, 57(3): 272-282.
Yi QIAN,
Guangyin YUAN.
Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents[J]. Acta Metall Sin, 2021, 57(3): 272-282.
1 |
Chen W W, Gao R L, Liu L S, et al. Summary of China cardiovascular disease report 2017 [J]. Chin. Circ. J., 2018, 33: 1
|
1 |
陈伟伟, 高润霖, 刘力生等. 《中国心血管病报告2017》概要 [J]. 中国循环杂志, 2018, 33: 1
|
2 |
Onuma Y, Ormiston J, Serruys P W. Bioresorbable scaffold technologies [J]. Circ. J., 2011, 75: 509
|
3 |
Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
|
3 |
王鲁宁, 孟 瑶, 刘丽君等. 可降解锌基生物材料的研究进展 [J]. 金属学报, 2017, 53: 1317
|
4 |
Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
|
5 |
Zhou C, Li H F, Yin Y X, et al. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery [J]. Acta Biomater., 2019, 97: 657
|
6 |
Wu Y Z, Ge J B. Views on current situation and future of bioabsorbable scaffolds from ABSORB serial researches [J]. Geriatr. Health Care, 2018, 24(2): 97
|
6 |
吴轶喆, 葛均波. 从ABSORB系列研究看生物可吸收支架现状和未来之路 [J]. 老年医学与保健, 2018, 24(2): 97
|
7 |
Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application [J]. Acta Metall. Sin., 2017, 53: 1227
|
7 |
郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53: 1227
|
8 |
Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial [J]. Lancet, 2007, 369: 1869
|
9 |
Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Mater. Sci. Eng. Rep., 2014, R77: 1
|
10 |
Lin W J, Qin L, Qi H P, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold [J]. Acta Biomater., 2017, 54: 454
|
11 |
Little P J, Bhattacharya R, Moreyra A E, et al. Zinc and cardiovascular disease [J]. Nutrition, 2010, 26: 1050
|
12 |
Yang H T, Wang C, Liu C Q, et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model [J]. Biomaterials, 2017, 145: 92
|
13 |
Zeng W J, Ling Y, Zhi X X. Biomechanics and biocompatibility characteristics of cardiovascular stents [J]. J. Clin. Rehabil. Tissue Eng. Res., 2008, 12: 2531
|
13 |
曾伟杰, 凌 友, 支晓兴. 心血管支架材料生物力学及生物相容性特征 [J]. 中国组织工程研究与临床康复, 2008, 12: 2531
|
14 |
Shearier E R, Bowen P K, He W L, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc [J]. ACS Biomater. Sci. Eng., 2016, 2: 634
|
15 |
Zhu D H, Cockerill I, Su Y C, et al. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials [J]. ACS Appl. Mater. Interfaces, 2019, 11: 6809
|
16 |
Ma J, Zhao N, Zhu D H. Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells [J]. Sci. Rep., 2016, 6: 26661
|
17 |
Liu X, Lu H. The advances in research of the research of restenosis after percutaneous transluminal coronary angioplasty [J]. Chin. J. Card. Rev., 2007, 5: 854
|
17 |
刘 晓, 陆 红. PTCA术后再狭窄形成机制的研究进展 [J]. 中国心血管病研究, 2007, 5: 854
|
18 |
Bowen P K, Guillory II R J, Shearier E R, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents [J]. Mater. Sci. Eng., 2015, C56: 467
|
19 |
Ma J, Zhao N, Zhu D H. Endothelial cellular responses to biodegradable metal zinc [J]. ACS Biomater. Sci. Eng., 2015, 1: 1174
|
20 |
Chen Z J, Gao R L. Coronary Heart Disease [M]. Beijing: People's Medical Publishing House, 2002: 676
|
20 |
陈在嘉, 高润霖. 冠心病 [M]. 北京: 人民卫生出版社, 2002: 676
|
21 |
Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents [J]. Acta Biomater., 2010, 6: 1693
|
22 |
Mostaed E, Sikora-Jasinska M, Drelich J W, et al. Zinc-based alloys for degradable vascular stent applications [J]. Acta Mater., 2018, 71: 1
|
23 |
Chen Y Q, Zhang W T, Maitz M F, et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline [J]. Corros. Sci., 2016, 111: 541
|
24 |
Vojtěch D, Kubásek J, Šerák J, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation [J]. Acta Biomater., 2011, 7: 3515
|
25 |
Wang L Q, Ren Y P, Qin G W. Research progress of Zn-based alloys as biodegradable materials [J]. Chin. J. Rare Met., 2017, 41: 571
|
25 |
王利卿, 任玉平, 秦高梧. 生物可降解锌基合金的研究进展 [J]. 稀有金属, 2017, 41: 571
|
26 |
Zhao S, Seitz J M, Eifler R, et al. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat [J]. Mater. Sci. Eng., 2017, C76: 301
|
27 |
Tang Z B, Niu J L, Huang H, et al. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications [J]. J. Mech. Behav. Biomed. Mater., 2017, 72: 182
|
28 |
Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
|
29 |
Wątroba M, Bednarczyk W, Kawałko J, et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material [J]. Mater. Des., 2019, 183: 108154
|
30 |
Li H F, Xie X H, Zheng Y F, et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr [J]. Sci. Rep., 2015, 5: 10719
|
31 |
Tang Z B, Huang H, Niu J L, et al. Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants [J]. Mater. Des., 2017, 117: 84
|
32 |
Yue R, Huang H, Ke G Z, et al. Microstructure, mechanical properties and in vitro degradation behavior of novel Zn-Cu-Fe alloys [J]. Mater. Charact., 2017, 134: 114
|
33 |
Shi Z Z, Yu J, Liu X F, et al. Fabrication and characterization of novel biodegradable Zn-Mn-Cu alloys [J]. J. Mater. Sci. Technol., 2018, 34: 1008
|
34 |
Liu X W, Sun J K, Zhou F Y, et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application [J]. Mater. Des., 2016, 94: 95
|
35 |
Li H F, Yang H T, Zheng Y F, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr [J]. Mater. Des., 2015, 83: 95
|
36 |
Su Y C, Wang Y D, Tang L P, et al. Development of biodegradable Zn-based medical implants [A]. Orthopedic Biomaterials [C]. Cham: Springer, 2017: 311
|
37 |
Jin H L, Zhao S, Guillory R, et al. Novel high-strength, low-alloys Zn-Mg (<0.1wt% Mg) and their arterial biodegradation [J]. Mater. Sci. Eng., 2018, C84: 67
|
38 |
Sun S N, Ren Y P, Wang L Q, et al. Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys [J]. Mater. Sci. Eng., 2017, A701: 129
|
39 |
Dai Y L, Zhang Y, Liu H, et al. Mechanical strengthening mechanism of Zn-Li alloy and its mini tube as potential absorbable stent material [J]. Mater. Lett., 2019, 235: 220
|
40 |
Niu J L, Tang Z B, Huang H, et al. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application [J]. Mater. Sci. Eng., 2016, C69: 407
|
41 |
Yue R, Zhang J, Ke G Z, et al. Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5 Fe alloy [J]. Mater. Sci. Eng., 2019, C105: 110106
|
42 |
Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nat. Commun., 2020, 11: 401
|
43 |
Bowen P K, Shearier E R, Zhao S, et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys [J]. Adv. Healthcare Mater., 2016, 5: 1121
|
44 |
Yuan G Y, Amiya K, Inoue A. Structural relaxation, glass-forming ability and mechanical properties of Mg-Cu-Ni-Gd alloys [J]. J. Non-Cryst. Solids, 2005, 351: 729
|
45 |
Huang H, Yuan G Y. Biodegradable medical zinc copper alloy and preparation method and purpose thereof [P]. Chin Pat, 201510512800.6, 2015
|
45 |
黄 华, 袁广银. 生物可降解的医用锌铜合金及其制备方法和用途 [P]. 中国专利, 201510512800.6, 2015)
|
46 |
Caroli S, Alimonti A, Coni E, et al. The assessment of reference values for elements in human biological tissues and fluids: A systematic review [J]. Crit. Rev. Anal. Chem., 1994, 24: 363
|
47 |
Patterson K Y, Holbrook J T, Bodner J E, et al. Zinc, copper, and manganese intake and balance for adults consuming self-selected diets [J]. Am. J. Clin. Nutr., 1984, 40(suppl.6): 1397
|
48 |
Liu C, Fu X K, Pan H B, et al. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects [J]. Sci. Rep., 2016, 6: 27374
|
49 |
Sikora-Jasinska M, Mostaed E, Mostaed A, et al. Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn-Ag alloys for degradable implant applications [J]. Mater. Sci. Eng., 2017, C77: 1170
|
50 |
Li P, Schille C, Schweizer E, et al. Mechanical characteristics, in vitro degradation, cytotoxicity, and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material [J]. Int. J. Mol. Sci., 2018, 19: 755
|
51 |
Xie Y, Zhao L C, Zhang Z, et al. Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials [J]. Mater. Chem. Phys., 2018, 219: 433
|
52 |
Bednarczyk W, Wątroba M, Kawałko J, et al. Determination of room-temperature superplastic asymmetry and anisotropy of Zn-0.8Ag alloy processed by ECAP [J]. Mater. Sci. Eng., 2019, A759: 55
|
53 |
Bednarczyk W, Wątroba M, Kawałko J, et al. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP [J]. Mater. Sci. Eng., 2019, A748: 357
|
54 |
Zhao M J, Jin L, Dong J, et al. Influence of twinning behavior on mechanical property of pure zinc deformed at room temperature [J]. Chin. J. Nonferrous Met., 2018, 28: 1808
|
54 |
赵梦杰, 靳 丽, 董 杰等. 室温变形过程中纯Zn的孪生行为对力学性能的影响 [J]. 中国有色金属学报, 2018, 28: 1808
|
55 |
Chen C X, Chen J H, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy [J]. Biomaterials, 2019, 221: 119414
|
56 |
Haessner F, Hoschek G, Tölg G. Stored energy and recrystallization temperature of rolled copper and silver single crystals with defined solute contents [J]. Acta Metall., 1979, 27: 1539
|
57 |
Bohlen J, Nürnberg M R, Senn J W, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets [J]. Acta Mater., 2007, 55: 2101
|
58 |
Chang S, Qin Z X, Lu X. Effect of V4C3 precipitation on recrystallization temperature and mechanical poperties of Fe-Mn-Al steel [J]. J. Dalian Jiaotong Univ., 2014, 35(3): 83
|
58 |
常 帅, 覃作祥, 陆 兴. V4C3沉淀对Fe-Mn-Al钢再结晶温度和力学性能的影响 [J]. 大连交通大学学报, 2014, 35(3): 83
|
59 |
Xiao F R, Cao Y B, Qiao G Y, et al. Effect of Nb solute and NbC precipitates on dynamic or static recrystallization in Nb steels [J]. J. Iron Steel Res. Int., 2012, 19: 52
|
60 |
Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility [J]. Metall. Mater. Trans., 2002, 33A: 813
|
61 |
Huang H, Yuan G Y, Chen C L, et al. Excellent mechanical properties of an ultrafine-grained quasicrystalline strengthened magnesium alloy with multi-modal microstructure [J]. Mater. Lett., 2013, 107: 181
|
62 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous Lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
|
63 |
Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn [J]. Acta Mater., 2004, 52: 5093
|
64 |
Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Mater., 2003, 51: 2055
|
65 |
Kocks U F, Argon A S, Ashby M F. Thermodynamics and kinetics of slip [J]. Prog. Mater. Sci., 1975, 19: 141
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|