Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 272-282    DOI: 10.11900/0412.1961.2020.00161
  综述 本期目录 | 过刊浏览 |
可降解锌合金血管支架的研究现状、面临的挑战与对策思考
钱漪1,2, 袁广银1()
1.上海交通大学 轻合金精密成型国家工程研究中心和金属基复合材料国家重点实验室 上海 200240
2.上海交通大学医学院附属瑞金医院 心血管内科 上海 200025
Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents
QIAN Yi1,2, YUAN Guangyin1()
1.National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
2.Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
引用本文:

钱漪, 袁广银. 可降解锌合金血管支架的研究现状、面临的挑战与对策思考[J]. 金属学报, 2021, 57(3): 272-282.
Yi QIAN, Guangyin YUAN. Research Status, Challenges, and Countermeasures of Biodegradable Zinc-Based Vascular Stents[J]. Acta Metall Sin, 2021, 57(3): 272-282.

全文: PDF(1018 KB)   HTML
摘要: 

金属Zn可在人体内降解吸收,其降解速率最适合血管支架的临床要求。同时Zn2+本身也是人体必要的营养元素,参与体内200多种酶的活动与代谢,并具有修复和提升血管内皮的完整性和抗动脉粥样硬化的功能,具有作为血管支架材料的天然优势。本文结合作者课题组近年的研究工作,对可降解锌合金血管支架领域的研究进行了系统总结,分别从可降解锌合金血管支架的研究背景、研究现状与挑战、解决这些挑战问题的思路和对策、以及未来发展展望等方面进行了介绍和评述,期待能对本领域的研究工作给予借鉴和启迪,从而对推动我国在相关领域的研究发展起到有益作用。

关键词 可降解锌合金血管支架研究现状临床挑战对策思考    
Abstract

Human body can absorb and degrade Zn. Among the biodegradable metals of Mg, Zn, and Fe, the degradation rate of Zn is the most suitable for the clinical requirements of vascular stents. Zinc ion is an essential nutrient in human body; it participates in the metabolic activities of more than 200 enzymes. Zn promotes and maintains the integrity of vascular endothelium and inhibits the progress of artery atherosclerosis, making it naturally advantageous as a vascular stent material. This review systematically summarizes the research in the field of biodegradable zinc-based vascular stents based on recent studies conducted by the author's research team. In addition, this review introduces and discusses the research background, status, and challenges as well as the countermeasures of the challenges and prospects for the future development of biodegradable Zn-based vascular stents. It is expected that the comments and itemized strategies for solving the identified challenges in this review can inspire related researchers to perform research studies in associated fields in China.

Key wordsbiodegradable zinc-based alloy vascular stent    research status    clinical challenge    countermeasure
收稿日期: 2020-05-13     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划项目(2018YFE0115400);国家自然科学基金项目(51971134);上海交通大学多学科交叉项目培育(转化)项目(ZH2018ZDA34)
作者简介: 钱 漪,女,1978年生,副主任医师,博士生
图1  血管修复过程中可降解生物支架机械完整性与支架降解之间的理想模式[21]
AlloyPreparation processIn vitro (immersion test)In vivoRef.
mm·a-1mm·a-1
ZnAs-drawn0.012 (45 d)[4]
0.05 (180 d)
Zn-0.8CuAs-extruded & as-drawn0.016 (180 d)[5]
Zn-LiAs-drawn0.08 (60 d)[26]
0.046 (12 months)
ZnAs-extruded0.022SBF (20 d)[27]
Zn-MgAs-extruded0.084Hank's (14 d)[28]
Zn-AgAs-extruded0.015Hank's (28 d)[29]
Zn-CuAs-extruded0.033SBF (20 d)[27]
Zn-CaAs-rolled0.089Hank's (14 d)[30]
Zn-SrAs-rolled0.098Hank's (14 d)[30]
Zn-0.05ZrAs-extruded0.014Hank's (28 d)[29]
Zn-3Cu-0.1MgAs-extruded0.022Hank's (20 d)[31]
Zn-3Cu-1MgAs-extruded0.043Hank's (20 d)[31]
Zn-3Cu-0.5FeAs-extruded0.064SBF (20 d)[32]
Zn-3Cu-1FeAs-extruded0.069SBF (20 d)[32]
Zn-0.35Mn-0.41CuAs-rolled0.050SBF (14 d)[33]
Zn-0.75Mn-0.40CuAs-rolled0.065SBF (14 d)[33]
Zn-1.5Mg-0.1MnAs-cast0.080Hank's (30 d)[34]
0.065Hank's (90 d)
Zn-Mg-0.1MnAs-rolled0.115Hank's (30 d)[34]
0.070Hank's (90 d)
Zn-Mg-CaAs-extruded0.090Hank's (56 d)[35]
Zn-Mg-SrAs-extruded0.095Hank's (56 d)[35]
Zn-Ca-SrAs-extruded0.109Hank's (56 d)[35]
Zn-Ag-0.05ZrAs-extruded0.017Hank's (28 d)[29]
表1  可降解锌基合金在体内、体外降解速率[4,5,26~35]
图2  文献报道的医用锌合金室温下老化性能测试结果[37],及作者所在课题组研发的可降解Zn-Cu合金抗老化性能测试结果对比。图2a中显示Zn-Mg合金[37]刚制备出来时拉伸延伸率为30%,室温下存放1 a后急剧降至4%,表现出严重的老化特性;而本课题组研发的专利Zn-Cu合金,刚制备出的拉伸延伸率与室温存放20个月后延伸率几乎一样(均为58%左右),表现出优异的抗老化性能和变形能力
1 Chen W W, Gao R L, Liu L S, et al. Summary of China cardiovascular disease report 2017 [J]. Chin. Circ. J., 2018, 33: 1
1 陈伟伟, 高润霖, 刘力生等. 《中国心血管病报告2017》概要 [J]. 中国循环杂志, 2018, 33: 1
2 Onuma Y, Ormiston J, Serruys P W. Bioresorbable scaffold technologies [J]. Circ. J., 2011, 75: 509
3 Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
3 王鲁宁, 孟 瑶, 刘丽君等. 可降解锌基生物材料的研究进展 [J]. 金属学报, 2017, 53: 1317
4 Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
5 Zhou C, Li H F, Yin Y X, et al. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery [J]. Acta Biomater., 2019, 97: 657
6 Wu Y Z, Ge J B. Views on current situation and future of bioabsorbable scaffolds from ABSORB serial researches [J]. Geriatr. Health Care, 2018, 24(2): 97
6 吴轶喆, 葛均波. 从ABSORB系列研究看生物可吸收支架现状和未来之路 [J]. 老年医学与保健, 2018, 24(2): 97
7 Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application [J]. Acta Metall. Sin., 2017, 53: 1227
7 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53: 1227
8 Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial [J]. Lancet, 2007, 369: 1869
9 Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Mater. Sci. Eng. Rep., 2014, R77: 1
10 Lin W J, Qin L, Qi H P, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold [J]. Acta Biomater., 2017, 54: 454
11 Little P J, Bhattacharya R, Moreyra A E, et al. Zinc and cardiovascular disease [J]. Nutrition, 2010, 26: 1050
12 Yang H T, Wang C, Liu C Q, et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model [J]. Biomaterials, 2017, 145: 92
13 Zeng W J, Ling Y, Zhi X X. Biomechanics and biocompatibility characteristics of cardiovascular stents [J]. J. Clin. Rehabil. Tissue Eng. Res., 2008, 12: 2531
13 曾伟杰, 凌 友, 支晓兴. 心血管支架材料生物力学及生物相容性特征 [J]. 中国组织工程研究与临床康复, 2008, 12: 2531
14 Shearier E R, Bowen P K, He W L, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc [J]. ACS Biomater. Sci. Eng., 2016, 2: 634
15 Zhu D H, Cockerill I, Su Y C, et al. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials [J]. ACS Appl. Mater. Interfaces, 2019, 11: 6809
16 Ma J, Zhao N, Zhu D H. Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells [J]. Sci. Rep., 2016, 6: 26661
17 Liu X, Lu H. The advances in research of the research of restenosis after percutaneous transluminal coronary angioplasty [J]. Chin. J. Card. Rev., 2007, 5: 854
17 刘 晓, 陆 红. PTCA术后再狭窄形成机制的研究进展 [J]. 中国心血管病研究, 2007, 5: 854
18 Bowen P K, Guillory II R J, Shearier E R, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents [J]. Mater. Sci. Eng., 2015, C56: 467
19 Ma J, Zhao N, Zhu D H. Endothelial cellular responses to biodegradable metal zinc [J]. ACS Biomater. Sci. Eng., 2015, 1: 1174
20 Chen Z J, Gao R L. Coronary Heart Disease [M]. Beijing: People's Medical Publishing House, 2002: 676
20 陈在嘉, 高润霖. 冠心病 [M]. 北京: 人民卫生出版社, 2002: 676
21 Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents [J]. Acta Biomater., 2010, 6: 1693
22 Mostaed E, Sikora-Jasinska M, Drelich J W, et al. Zinc-based alloys for degradable vascular stent applications [J]. Acta Mater., 2018, 71: 1
23 Chen Y Q, Zhang W T, Maitz M F, et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline [J]. Corros. Sci., 2016, 111: 541
24 Vojtěch D, Kubásek J, Šerák J, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation [J]. Acta Biomater., 2011, 7: 3515
25 Wang L Q, Ren Y P, Qin G W. Research progress of Zn-based alloys as biodegradable materials [J]. Chin. J. Rare Met., 2017, 41: 571
25 王利卿, 任玉平, 秦高梧. 生物可降解锌基合金的研究进展 [J]. 稀有金属, 2017, 41: 571
26 Zhao S, Seitz J M, Eifler R, et al. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat [J]. Mater. Sci. Eng., 2017, C76: 301
27 Tang Z B, Niu J L, Huang H, et al. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications [J]. J. Mech. Behav. Biomed. Mater., 2017, 72: 182
28 Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
29 Wątroba M, Bednarczyk W, Kawałko J, et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material [J]. Mater. Des., 2019, 183: 108154
30 Li H F, Xie X H, Zheng Y F, et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr [J]. Sci. Rep., 2015, 5: 10719
31 Tang Z B, Huang H, Niu J L, et al. Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants [J]. Mater. Des., 2017, 117: 84
32 Yue R, Huang H, Ke G Z, et al. Microstructure, mechanical properties and in vitro degradation behavior of novel Zn-Cu-Fe alloys [J]. Mater. Charact., 2017, 134: 114
33 Shi Z Z, Yu J, Liu X F, et al. Fabrication and characterization of novel biodegradable Zn-Mn-Cu alloys [J]. J. Mater. Sci. Technol., 2018, 34: 1008
34 Liu X W, Sun J K, Zhou F Y, et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application [J]. Mater. Des., 2016, 94: 95
35 Li H F, Yang H T, Zheng Y F, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr [J]. Mater. Des., 2015, 83: 95
36 Su Y C, Wang Y D, Tang L P, et al. Development of biodegradable Zn-based medical implants [A]. Orthopedic Biomaterials [C]. Cham: Springer, 2017: 311
37 Jin H L, Zhao S, Guillory R, et al. Novel high-strength, low-alloys Zn-Mg (<0.1wt% Mg) and their arterial biodegradation [J]. Mater. Sci. Eng., 2018, C84: 67
38 Sun S N, Ren Y P, Wang L Q, et al. Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys [J]. Mater. Sci. Eng., 2017, A701: 129
39 Dai Y L, Zhang Y, Liu H, et al. Mechanical strengthening mechanism of Zn-Li alloy and its mini tube as potential absorbable stent material [J]. Mater. Lett., 2019, 235: 220
40 Niu J L, Tang Z B, Huang H, et al. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application [J]. Mater. Sci. Eng., 2016, C69: 407
41 Yue R, Zhang J, Ke G Z, et al. Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5 Fe alloy [J]. Mater. Sci. Eng., 2019, C105: 110106
42 Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nat. Commun., 2020, 11: 401
43 Bowen P K, Shearier E R, Zhao S, et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys [J]. Adv. Healthcare Mater., 2016, 5: 1121
44 Yuan G Y, Amiya K, Inoue A. Structural relaxation, glass-forming ability and mechanical properties of Mg-Cu-Ni-Gd alloys [J]. J. Non-Cryst. Solids, 2005, 351: 729
45 Huang H, Yuan G Y. Biodegradable medical zinc copper alloy and preparation method and purpose thereof [P]. Chin Pat, 201510512800.6, 2015
45 黄 华, 袁广银. 生物可降解的医用锌铜合金及其制备方法和用途 [P]. 中国专利, 201510512800.6, 2015)
46 Caroli S, Alimonti A, Coni E, et al. The assessment of reference values for elements in human biological tissues and fluids: A systematic review [J]. Crit. Rev. Anal. Chem., 1994, 24: 363
47 Patterson K Y, Holbrook J T, Bodner J E, et al. Zinc, copper, and manganese intake and balance for adults consuming self-selected diets [J]. Am. J. Clin. Nutr., 1984, 40(suppl.6): 1397
48 Liu C, Fu X K, Pan H B, et al. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects [J]. Sci. Rep., 2016, 6: 27374
49 Sikora-Jasinska M, Mostaed E, Mostaed A, et al. Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn-Ag alloys for degradable implant applications [J]. Mater. Sci. Eng., 2017, C77: 1170
50 Li P, Schille C, Schweizer E, et al. Mechanical characteristics, in vitro degradation, cytotoxicity, and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material [J]. Int. J. Mol. Sci., 2018, 19: 755
51 Xie Y, Zhao L C, Zhang Z, et al. Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials [J]. Mater. Chem. Phys., 2018, 219: 433
52 Bednarczyk W, Wątroba M, Kawałko J, et al. Determination of room-temperature superplastic asymmetry and anisotropy of Zn-0.8Ag alloy processed by ECAP [J]. Mater. Sci. Eng., 2019, A759: 55
53 Bednarczyk W, Wątroba M, Kawałko J, et al. Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP [J]. Mater. Sci. Eng., 2019, A748: 357
54 Zhao M J, Jin L, Dong J, et al. Influence of twinning behavior on mechanical property of pure zinc deformed at room temperature [J]. Chin. J. Nonferrous Met., 2018, 28: 1808
54 赵梦杰, 靳 丽, 董 杰等. 室温变形过程中纯Zn的孪生行为对力学性能的影响 [J]. 中国有色金属学报, 2018, 28: 1808
55 Chen C X, Chen J H, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy [J]. Biomaterials, 2019, 221: 119414
56 Haessner F, Hoschek G, Tölg G. Stored energy and recrystallization temperature of rolled copper and silver single crystals with defined solute contents [J]. Acta Metall., 1979, 27: 1539
57 Bohlen J, Nürnberg M R, Senn J W, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets [J]. Acta Mater., 2007, 55: 2101
58 Chang S, Qin Z X, Lu X. Effect of V4C3 precipitation on recrystallization temperature and mechanical poperties of Fe-Mn-Al steel [J]. J. Dalian Jiaotong Univ., 2014, 35(3): 83
58 常 帅, 覃作祥, 陆 兴. V4C3沉淀对Fe-Mn-Al钢再结晶温度和力学性能的影响 [J]. 大连交通大学学报, 2014, 35(3): 83
59 Xiao F R, Cao Y B, Qiao G Y, et al. Effect of Nb solute and NbC precipitates on dynamic or static recrystallization in Nb steels [J]. J. Iron Steel Res. Int., 2012, 19: 52
60 Yoo M H, Morris J R, Ho K M, et al. Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility [J]. Metall. Mater. Trans., 2002, 33A: 813
61 Huang H, Yuan G Y, Chen C L, et al. Excellent mechanical properties of an ultrafine-grained quasicrystalline strengthened magnesium alloy with multi-modal microstructure [J]. Mater. Lett., 2013, 107: 181
62 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous Lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
63 Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn [J]. Acta Mater., 2004, 52: 5093
64 Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Mater., 2003, 51: 2055
65 Kocks U F, Argon A S, Ashby M F. Thermodynamics and kinetics of slip [J]. Prog. Mater. Sci., 1975, 19: 141
[1] 张学习, 郑忠, 高莹, 耿林. 金属基复合材料高通量制备及表征技术研究进展[J]. 金属学报, 2019, 55(1): 109-125.