Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1153-1167    DOI: 10.11900/0412.1961.2017.00319
  研究论文 本期目录 | 过刊浏览 |
镁合金全降解血管支架研究进展
奚廷斐1,2(), 魏利娜1,3, 刘婧2, 刘小丽4, 甄珍1, 郑玉峰5
1 北京大学深圳研究院 深圳 518057
2 北京大学前沿交叉学科研究院 北京 100871
3 中国食品药品检定研究院 北京 100050
4 河北科技大学材料科学与工程学院 石家庄 050018
5 北京大学工学院材料科学与工程系 北京 100871
Research Progress in Bioresorbable Magnesium Scaffolds
Tingfei XI1,2(), Lina WEI1,3, Jing LIU2, Xiaoli LIU4, Zhen ZHEN1, Yufeng ZHENG5
1 Shenzhen Institute, Peking University, Shenzhen 518057, China
2 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
3 National Institute for Food and Drug Control, Beijing 100050, China
4 College of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
5 Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
引用本文:

奚廷斐, 魏利娜, 刘婧, 刘小丽, 甄珍, 郑玉峰. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53(10): 1153-1167.
Tingfei XI, Lina WEI, Jing LIU, Xiaoli LIU, Zhen ZHEN, Yufeng ZHENG. Research Progress in Bioresorbable Magnesium Scaffolds[J]. Acta Metall Sin, 2017, 53(10): 1153-1167.

全文: PDF(9003 KB)   HTML
摘要: 

全降解血管支架具有克服传统不可降解金属支架长期植入引起的慢性炎症、晚期支架血栓以及需长期服用抗血小板药物等问题的潜在优势,因此目前在世界范围内是介入医学工程领域研究开发的热点。镁合金全降解血管支架因兼具较高的支撑强度和生物可降解吸收特性,更是走在了全降解血管支架发展的前列。本文主要介绍国际上广泛关注的德国Biotronik公司镁合金全降解血管支架的研发历程,以及我国自主研发的AZ31、JDBM和MgZnYNd 3种镁合金全降解血管支架研发现状。国内外大量的动物和临床实验表明,镁合金血管支架在体内是安全有效的,但其降解速率比预期稍快。通过建立新型合金体系并改善支架的结构和涂层,镁合金全降解血管支架性能将逐渐完善,并在不久的将来在治疗心血管疾病等方面发挥其重大作用。

关键词 镁合金全降解血管支架WE43镁合金JDBM镁合金MgZnYNd镁合金    
Abstract

Because the bioresorbable scaffold (BRS) could overcome the difficulties caused by traditional nondegradable stents including chronic inflammation, late stent thrombosis, and long-term antiplatelet therapy, BRS is the research focus of interventional medical engineering. Because of both the high supporting strength and bioresorbable feature, the bioresorbable magnesium scaffold (BMS) is the research focus of BRS. In this paper, development process of Biotronik serial magnesium stents along with research progress of our domestic AZ31, JDBM and MgZnYNd stents is reviewed. According to the results of extensive in vitro and in vivo studies, BMS is safe and effective in vivo although its degradation rate is faster than our expectation. Through developing novel alloy system and improving stents' structure, the performance of BMS will be better and it will play more important role on the therapy of cardiovascular disease.

Key wordsbioresorbable magnesium scaffold    WE43 magnesium alloy    JDBM magnesium alloy    MgZnYNd magnesium alloy
收稿日期: 2017-07-28     
ZTFLH:  R318.08  
基金资助:广东省自然科学基金项目Nos.2016A030310245和2016A030310244,中国博士后基金项目No.2016M591017和深圳市基础研究(自由探索)项目No.JCYJ20160427170611414
作者简介:

作者简介 奚廷斐,男,1948年生,研究员

图1  Biotronik公司系列镁合金支架示意图[14]
Animal/clinical Stent type Implantation site Follow up Main result Ref.
study (quantity)
Animal Lekton Coronary artery 4 and 12 Homogenous and rapid endothelialization [15]
(Pig, 33) Magic? Weeks of the Mg alloy stent
Animal Lekton Coronary artery 3 d, 1 and Mg alloy stents are safe and are associated with [16]
(Pig, 17) Magic? 3 months less neointima formation; however, reduced
neointima did not result in larger lumen
Single case Lekton Left pulmonary 3 d, 1 and Mg alloy stents are safe even in pediatric [17]
Magic? artery 4 months patients; bioabsorbable stents with different
diameters may be more helpful in vessel
stenosis diseases
Single case Lekton Aorta 3 months Mg alloy stents are safe and efficacy [18]
Magic?
Single case Lekton Aortopulmonary 4 months Mg alloy stents are safe and efficacy in [19]
Magic? collateral children previously deemed unsuitable for
stent placement
Clinical (20) Lekton Infrapopliteal 1 and 3 Mg alloy stents are safe and efficacy in the [20]
Magic? vessels months treatment of below-knee lesions after
3 months based on the primary clinical
patency and limb salvage rates
Clinical (117) Lekton Infrapopliteal 1 and 6 Mg alloy stents are safe, but it did not demonstrate [21]
Magic? vessels months efficacy in long-term patency over standard
PTA1 in the infrapopliteal vessels
Clinical (63) Lekton Coronary artery 4, 6 and Mg alloy stents can achieve an immediate [3]
Magic? 12 months angiographic result similar to the result of
other metal stents and can be safely degraded
after 4 months
Clinical (63) Lekton Coronary artery 4, 12 and IVUS2 imaging supports the safety profile of Mg [22]
Magic? 28 months alloy stents with degradation at 4 months and
maintains durability of the results without any
early or late adverse findings
Clinical (63) DREAMS Coronary artery 1, 6 and DREAMS (Mg alloy stents) is safe and efficacy, [4]
12 months promising clinical and angiographic performance
results up to 12 months
Clinical (63) DREAMS Coronary artery 24 and DREAMS is safe and efficacy with no death and [23]
36 months no scaffold thrombosis up to 3 years; stents could
be absorbed completely within 6 months
Clinical (123) DREAMS Coronary artery 6 and 12 Implantation of the DREAMS 2G device in [5]
2G months de-novo coronary lesions is feasible, with
favorable safety and performance outcomes at
6 months. This novel absorbable metal scaffold
could be an alternative to absorbable polymeric
scaffolds for treatment of obstructive
coronary disease
表1  Biotronik公司镁合金支架的动物及临床实验[3-5,15-23]
图2  不锈钢支架和镁合金支架植入28 d后的组织病理照片[16]
图3  JDBM、WE43和AZ31镁合金腐蚀形貌和腐蚀机理示意图[32]
图4  主动脉体内造影显示JDBM-2和316L不锈钢支架中均无急性和慢性血栓形成和支架内狭窄(从左到右分别为支架植入后1、2、4、6个月的结果)及JDBM-2和316L支架内IVUS结果[33]
图5  JDBM支架植入后不同时间点的支架段血管组织病理图及局部放大图[33]
图6  CCK-8法测MgZnYNd、2%PLGA-APTES-MgZnYNd、4%PLGA-APTES-MgZnYNd和4%PLGA-MgZnYNd样品表面培养的血管平滑肌细胞(VSMC)和人脐静脉内皮细胞(EA.hy926) 1、3、5天的细胞增殖率;细胞培养板作阴性对照,含10%二甲基亚砜的DMEM为阳性对照。组间差异采用One-way ANOVA统计比较方法,***代表p<0.001,*代表p<0.05[36]
图7  MgZnYNd药物洗脱冠状动脉支架显微镜及扫描电镜照片;“三点弯曲法”用于柔顺性测试;依据ASTM-F2394-07自行设计的血管通道模型(装配6F导管,导管内径1.98 mm)测试支架顺应性;支架在通道模型内进行推送和回撤过程以及顺应性实验后支架图像[36]
图8  MgZnYNd支架和BuMATM对照组植入6个月后的冠状血管造影(CAG)、光学相干断层扫描(OCT)和苏木精-伊红染色(HE)组织病理图像[36]
Implantation duration Stent type RLD MLD DSR
month mm mm %
1 MgZnYNd (n=3) 2.62±0.20 2.09±0.33 20.67±9.07
BuMATM (n=3) 2.59±0.65 2.15±0.41 15.67±5.86
p value 0.67 0.88 0.56
3 MgZnYNd (n=3) 2.42±0.16 2.03±0.80 15.67±8.14
BuMATM (n=3) 2.03±0.18 1.51±0.13 15.67±5.86
p value 0.22 0.04 0.11
6 MgZnYNd (n=3) 2.75±0.26 2.30±0.49 15.33±22.23
BuMATM (n=3) 2.65±0.80 2.05±0.31 22.33±14.15
p value 0.11 0.62 0.13
表2  MgZnYNd支架和BuMATM支架对照组术后1、3和6个月后体内定量血管造影结果[36]
Implantation Stent type Stent length DRVA PRVA MLA MSA
duration / month mm mm2 mm2 mm2 mm2
1 MgZnYNd (n=3) 14.30±1.27 2.56±2.87 2.72±2.80 2.02±1.84 2.62±1.94
BuMATM (n=3) 14.70±2.08 2.84±0.83 3.68±0.93 2.49±0.37 4.97±1.10
3 MgZnYNd (n=3) 14.80±0.97 4.51±1.37 6.36±2.16 3.87±1.85 5.52±2.10
BuMATM (n=3) 14.25±4.45 2.58±0.19 4.09±1.24 2.32±0.05 5.22±0.61
6 MgZnYNd (n=3) 14.13±0.95 3.92±0.79 3.94±0.78 2.93±0.58 4.52±1.08
BuMATM (n=3) 14.40±2.78 5.58±2.43 5.89±1.66 3.03±1.09 6.03±1.90
表3  MgZnYNd支架和BuMATM对照组术后1、3和6个月体内OCT结果[36]
[1] Serruys P W, Ormiston J A, Onuma Y, et al.A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods[J]. Lancet, 2009, 373: 897
[2] Gogas B D, Serruys P W, Diletti R, et al.Vascular response of the segments adjacent to the proximal and distal edges of the ABSORB everolimus-eluting bioresorbable vascular scaffold: 6-month and 1-year follow-up assessment: A virtual histology intravascular ultrasound study from the first-in-man ABSORB cohort B trial[J]. JACC Cardiovasc. Interv., 2012, 5: 656
[3] Erbel R, Di Mario C, Bartunek J, et al.Three-year clinical data of the biosolve-I study with the paclitaxel-eluting bioabsorbable magnesium scaffold (Dreams) and multi-modality imaging analysis[J]. Circulation, 2013, 128(22S): 11264
[4] Haude M, Erbel R, Erne P, et al.Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial[J]. Lancet, 2013, 381: 836
[5] Haude M, Ince H, Abizaid A, et al.Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial[J]. Lancet, 2016, 387: 31
[6] Eberhart R C, Su S H, Nguyen K T, et al.Bioresorbable polymeric stents: Current status and future promise[J]. J Biomater. Sci. Polym. Ed., 2003, 14: 299
[7] Lincoff A M, Furst J G, Ellis S G, et al.Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model[J]. J. Am. Coll. Cardiol., 1997, 29: 808
[8] Waksman R.Update on bioabsorbable stents: From bench to clinical[J]. J. Interv. Cardiol., 2006, 19: 414
[9] Erne P, Schier M, Resink T J.The road to bioabsorbable stents: Reaching clinical reality?[J]. Cardiovasc. Inter. Rad., 2006, 29: 11
[10] Smith L F, Heagerty A M, Bing R F, et al.Intravenous infusion of magnesium-sulfate after acute myocardial-infarction: Effects on arrhythmias and mortality[J]. Int. J. Cardiol., 1986, 12: 175
[11] Christensen C W, Rieder M A, Silverstein E L, et al.Magnesium-sulfate reduces myocardial infarct size when administered before but not after coronary reperfusion in a canine model[J]. Circulation, 1995, 92: 2617
[12] Rukshin V, Azarbal B, Shah P K, et al.Intravenous magnesium in experimental stent thrombosis in swine[J]. Arterioscl. Throm. Vas., 2001, 21: 1544
[13] Heublein B, Rohde R, Kaese V, et al.Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology?[J]. Heart, 2003, 89: 651
[14] Campos C M, Muramatsu T, Iqbal J, et al.Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease[J]. Int. J. Mol. Sci., 2013, 14: 24492
[15] Di Mario C, Griffiths H, Goktekin O, et al.Drug-eluting bioabsorbable magnesium stent[J]. J. Interv. Cardiol., 2004, 17: 391
[16] Waksman R, Pakala R, Kuchulakanti P K, et al.Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries[J]. Catheter Cardiovasc. Interv., 2006, 68: 607
[17] Zartner P, Cesnjevar R, Singer H, et al.First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby[J]. Catheter Cardio. Interv., 2005, 66: 590
[18] Schranz D, Zartner P, Michel-Behnke I, et al.Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn[J]. Catheter Cardio. Int., 2006, 67: 671
[19] McMahon C J, Oslizlok P, Walsh K P. Early restenosis following biodegradable stent implantation in an aortopulmonary collateral of a patient with pulmonary atresia and hypoplastic pulmonary arteries[J]. Catheter Cardio. Int., 2007, 69: 735
[20] Peeters P, Bosiers M, Verbist J, et al.Preliminary results after application of absorbable metal stents in patients with critical limb ischemia[J]. J. Endovasc. Ther., 2005, 12: 1
[21] Bosiers M.AMS INSIGHT—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis[J]. Cardiovasc. Interv. Radiol., 2009, 32: 424
[22] Waksman R, Erbel R, Di Mario C, et al.Early-and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries[J]. Jacc-Cardiovasc. Int., 2009, 2: 312
[23] Haude M, Erhel R, Erne P, et al.Three-year clinical data of the biosolve-I study with the paclitaxel-eluting bioabsorbable magnesium scaffold (Dreams) and multi-modality imaging analysis[J]. Circulation, 2013, 128(22S): 11264
[24] Haude M, Erbel R, Erne P, et al.TCT-38 two-year clinical data of cohort 1 and multi-modality imaging resuts up to 1-year follow-up of the BIOSOLVE-I study with the paclitaxel-eluting bioabsorbable magnesium scaffold (DREAMS)[J]. J. Am. Coll. Cardiol., 2012, 60: B11
[25] Haude M, Ince H, Abizaid A, et al.Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial[J]. Eur. Heart J., 2016, 37: 2701
[26] Tan L L, Wang Q, Geng F, et al.Preparation and characterization of Ca-P coating on AZ31 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: S648
[27] Lu Y J, Wan P, Zhang B C, et al.Research on the corrosion resistance and formation of double-layer calcium phosphate coating on AZ31 obtained at varied temperatures[J]. Mater. Sci. Eng., 2014, C43: 264
[28] Qiu X, Wan P, Tan L L, et al.Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition[J]. Mater. Sci. Eng., 2014, C36: 65
[29] Li H W, Xu K, Yang K, et al.The degradation performance of AZ31 bioabsorbable magnesium alloy stent implanted in the abdominal aorta of rabbits[J]. J. Interv. Radiol., 2010, 19: 315(李海伟, 徐克, 杨柯等. 可降解AZ31镁合金支架在兔腹主动脉的降解性能研究[J]. 介入放射学杂志, 2010, 19: 315)
[30] Li J L, Zheng F, Qiu X, et al.Finite element analyses for optimization design of biodegradable magnesium alloy stent[J]. Mater. Sci. Eng., 2014, C42: 705
[31] Yuan G Y, Zhang X B, Niu J L, et al.Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Chin. J. Nonferrous Met., 2011, 21: 2476(袁广银, 章晓波, 牛佳林等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21: 2476)
[32] Mao L, Shen L, Niu J L, et al.Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents[J]. Nanoscale, 2013, 5: 9517
[33] Mao L, Shen L, Chen J H, et al.A promising biodegradable magnesium alloy suitable for clinical vascular stent application[J]. Sci. Rep., 2017, 7: 46343
[34] Guan S K, Wang J, Wang L G, et al.The Mg-Zn-Y-Nd magnesium alloy for biodegradable vascular stents and its preparation method [P]. Chin Pat, 201110043303.8, 2011(关绍康, 王俊, 王利国等. 一种可生物降解血管支架用Mg-Zn-Y-Nd镁合金及其制备方法 [P]. 中国专利, 201110043303.8, 2011)
[35] Xi T F, Liu J, Wang M, et al.One kind of surface coating which can reduce the degradation rate of biodegradable Magnesium alloy vascular stents and its preparation method [P]. Chin Pat, 201410200367.8, 2014(奚廷斐, 刘婧, 王敏等. 降低可全降解镁合金血管支架降解速率的表面涂层制备方法 [P]. 中国专利, 201410200367.8, 2014)
[36] Liu J, Zheng B, Wang P, et al.Enhanced in vitro and in vivo performance of Mg-Zn-Y-Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application[J]. ACS Appl. Mater. Interfaces, 2016, 8: 17842
[37] Joner M, Finn A V, Farb A, et al.Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk[J]. J. Am. Coll. Cardiol., 2006, 48: 193
[38] Virmani R, Guagliumi G, Farb A, et al.Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: Should we be cautious?[J]. Circulation, 2004, 109: 701
[39] Kotani J, Awata M, Nanto S, et al.Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings[J]. J. Am. Coll. Cardiol., 2006, 47: 2108
[40] Liu J, Xi T F.Enhanced anti-corrosion ability and biocompatibility of PLGA coatings on MgZnYNd alloy by BTSE-APTES pre-treatment for cardiovascular stent[J]. J. Mater. Sci. Technol., 2016, 32: 845
[41] Liu J, Liu X L, Xi T F, et al.A novel pseudo-protein-based biodegradable coating for magnesium substrates: In vitro corrosion phenomena and cytocompatibility[J]. J. Mater. Chem., 2015, 3B: 878
[1] 郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520.
[2] 马政, 陆喜, 高明, 谭丽丽, 杨柯. 缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响[J]. 金属学报, 2018, 54(7): 1010-1018.
[3] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[4] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[5] 李慕勤, 姚海涛, 魏方红, 刘明达, 王赞, 彭书浩. 医用纯Mg表面多种复合处理膜层的组织结构和体内外性能[J]. 金属学报, 2017, 53(10): 1337-1346.
[6] 东家慧, 谭丽丽, 杨柯. 可降解镁基金属骨缺损修复材料的研究探索[J]. 金属学报, 2017, 53(10): 1197-1206.
[7] 任伊宾, 赵浩川, 杨柯. 高氮无镍不锈钢接骨板的轻量化设计及生物力学研究:厚度减薄的影响[J]. 金属学报, 2017, 53(10): 1331-1336.
[8] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[9] 任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
[10] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[11] 赵颖, 曾利兰, 梁涛. 可降解镁基金属的生物相容性研究进展[J]. 金属学报, 2017, 53(10): 1181-1196.
[12] 林潇, 葛隽, 吴水林, 刘宝华, 杨惠林, 杨磊. 兼具成骨和抗感染性能的医用金属材料研究进展[J]. 金属学报, 2017, 53(10): 1284-1302.
[13] 赵德伟, 李军雷. 多孔Ta的制备及其作为骨植入材料的应用进展[J]. 金属学报, 2017, 53(10): 1303-1310.
[14] 洪岩松; 杨柯; 张广道; 黄晶晶; 郝玉全; 艾红军 . 可降解镁合金的动物体内骨诱导作用[J]. 金属学报, 2008, 44(9): 1035-1041 .
[15] 桂林; 钟云波; 傅小明; 雷作胜; 任忠鸣 . 强磁场下共沉淀-相转化法制备纳米钴铁氧体颗粒[J]. 金属学报, 2007, 43(5): 529-533 .