|
|
可降解镁基金属骨缺损修复材料的研究探索 |
东家慧1,2, 谭丽丽1, 杨柯1( ) |
1 中国科学院金属研究所 沈阳 110016 2 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes |
Jiahui DONG1,2, Lili TAN1, Ke YANG1( ) |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
东家慧, 谭丽丽, 杨柯. 可降解镁基金属骨缺损修复材料的研究探索[J]. 金属学报, 2017, 53(10): 1197-1206.
Jiahui DONG,
Lili TAN,
Ke YANG.
Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes[J]. Acta Metall Sin, 2017, 53(10): 1197-1206.
[1] | Greenwald A S, Boden S D, Goldberg V M, et al.Bone-graft substitutes: Facts, fictions, and applications[J]. J. Bone Joint Surg. Am., 2001, 83: 98 | [2] | Finkemeier C G.Bone-grafting and bone-graft substitutes[J]. J. Bone Joint Surg. Am., 2002, 84: 454 | [3] | van Heest A, Swiontkowski M. Bone-graft substitutes[J]. Lancet, 1999, 353: S28 | [4] | Calori G M, Mazza E, Colombo M, et al.The use of bone-graft substitutes in large bone defects: Any specific needs?[J]. Injury, 2011, 42: S56 | [5] | Einhorn T A.Enhancement of fracture-healing[J]. J. Bone Joint Surg. Am., 1995, 77: 940 | [6] | Giannoudis P V, Dinopoulos H, Tsiridis E.Bone substitutes: An update[J]. Injury, 2005, 36: S20 | [7] | van der Stok J. Bone graft substitutes developed for trauma and orthopaedic surgery[J]. Ned. Tijdschr. Trauma., 2015, 23: 84 | [8] | Bhatt R A, Rozental T D.Bone graft substitutes[J]. Hand Clin., 2012, 28: 457 | [9] | Campana V, Milano G, Pagano E, et al.Bone substitutes in orthopaedic surgery: From basic science to clinical practice[J]. J. Mater. Sci. Mater. Med., 2014, 25: 2445 | [10] | Morone M A, Boden S D, Hair G, et al.The Marshall R. Urist young investigator award. gene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein 2[J]. Clin. Orthop. Relat. Res., 1998, (351): 252 | [11] | Goldberg V M.The biology of bone grafts[J]. Orthopedics, 2003, 26: 923 | [12] | Zipfel G J, Guiot B H, Fessler R G.Bone grafting[J]. Neurosurg Focus, 2003, 14: e8 | [13] | Baumhauer J, Pinzur M S, Donahue R, et al.Site selection and pain outcome after autologous bone graft harvest[J]. Foot Ankle Int., 2014, 35: 104 | [14] | Charalambides C, Beer M, Cobb A G.Poor results after augmenting autograft with xenograft (Surgibone) in hip revision surgery[J]. Acta Orthop., 2005, 76: 544 | [15] | Nandi S K, Roy S, Mukherjee P, et al.Orthopaedic applications of bone graft & graft substitutes: A review[J]. Indian J. Med. Res., 2010, 132: 15 | [16] | Robin B N, Chaput C D, Zeitouni S, et al.Cytokine-mediated inflammatory reaction following posterior cervical decompression and fusion associated with recombinant human bone morphogenetic protein-2: A case study[J]. Spine, 2010, 35: E1350 | [17] | Song G L, Atrens A.Corrosion mechanisms of magnesium alloys[J]. Adv. Eng. Mater., 1999, 1: 11 | [18] | Thormann U, Alt V, Heimann L, et al.The biocompatibility of degradable magnesium interference screws: An experimental study with sheep[J]. Biomed. Res. Int., 2015, 2015: 943603 | [19] | Witte F, Ulrich H, Rudert M, et al.Biodegradable magnesium scaffolds: Part 1: Appropriate inflammatory response[J]. J. Biomed. Mater. Res., 2007, 81A: 748 | [20] | Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728 | [21] | Liu C, Wan P, Tan L L, et al.Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications[J]. J. Orthop. Trans., 2014, 2: 139 | [22] | Xie X W, Huang J, Li N, et al.Progress of magnesium ions and magnesium alloy implant application in the clinical orthopaedics[J]. Chin. J. Tiss. Eng. Res., 2012, 16: 7317(谢兴文, 黄晋, 李宁等. 镁及镁合金植入体在骨科临床中的应用与进展[J]. 中国组织工程研究, 2012, 16: 7317) | [23] | Gu X N, Zheng Y F, Cheng Y, et al.In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30: 484 | [24] | Gao J C, Qiao L Y, Li L C, et al.Hemolysis effect and calcium-phosphate precipitation of heat-organic-film treated magnesium[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 539 | [25] | Li L C, Gao J C, Wang Y.Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid[J]. Surf. Coat. Technol., 2004, 185: 92 | [26] | Zhang S X, Zhang X N, Zhao C L, et al.Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater., 2010, 6: 626 | [27] | Zhang Q, Lin X, Qi Z R, et al.Magnesium alloy for repair of lateral Tibial Plateau defect in minipig model[J]. J. Mater. Sci. Technol., 2013, 29: 539 | [28] | Witte F, Ulrich H, Palm C, et al.Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling[J]. J. Biomed. Mater. Res., 2007, 81A: 757 | [29] | Zhang Y F, Xu J K, Ruan Y C, et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat. Med., 2016, 22: 1160 | [30] | Burmester A, Willumeit-R?mer R, Feyerabend F.Behavior of bone cells in contact with magnesium implant material[J]. J. Biomed. Mater. Res. Appl. Biomater., 2017, 105B: 165 | [31] | Zhai Z J, Qu X H, Li H W, et al.The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling[J]. Biomaterials, 2014, 35: 6299 | [32] | Zreiqat H, Howlett C R, Zannettino A, et al.Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants[J]. J. Biomed. Mater. Res., 2002, 62: 175 | [33] | Yoshizawa S, Brown A, Barchowsky A, et al.Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation[J]. Acta Biomater., 2014, 10: 2834 | [34] | Willbold E, Kalla K, Bartsch I, et al.Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal[J]. Acta Biomater., 2013, 9: 8509 | [35] | Yang T T, Ni Y X, Zhai J J, et al.Microstructure, mechanical properties, In Vitro degradation and cytotoxicity of Mg-4Zn-3HA alloy for biodegradable implant materials[J]. J. Hard Tiss. Biol., 2014, 23: 111 | [36] | Asagiri M, Takayanagi H.The molecular understanding of osteoclast differentiation[J]. Bone, 2007, 40: 251 | [37] | Castellani C, Lindtner R A, Hausbrandt P, et al.Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control[J]. Acta Biomater., 2011, 7: 432 | [38] | Lindtner R A, Castellani C, Tangl S, et al.Comparative biomechanical and radiological characterization of osseointegration of a biodegradable magnesium alloy pin and a copolymeric control for osteosynthesis[J]. J. Mech. Behav. Biomed. Mater., 2013, 28: 232 | [39] | Kraus T, Fischerauer S F, H?nzi A C, et al.Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone[J]. Acta Biomater., 2012, 8: 1230 | [40] | Liu C, Fu X K, Pan H B, et al.Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Sci. Rep., 2016, 6: 27374 | [41] | Boyan B D, Weesner T C, Lohmann C H, et al.Porcine fetal enamel matrix derivative enhances bone formation induced by demineralized freeze dried bone allograft in vivo[J]. J. Periodontol., 2000, 71: 1278 | [42] | Huang J J, Ren Y B, Zhang B C, et al.Study on biocompatility of magnesium and its alloys[J]. Rare Met. Mater. Eng., 2007, 36: 1102(黄晶晶, 任伊宾, 张炳春等. 镁及镁合金的生物相容性研究[J]. 稀有金属材料与工程, 2007, 36: 1102) | [43] | Reifenrath J, Badar M, Dziuba D, et al.Assessment of cellular reactions to magnesium as implant material in comparison to titanium and to glyconate using the mouse tail model[J]. J. Appl. Biomater. Funct. Mater., 2013, 11: e89 | [44] | Ren L, Lin X, Tan L L, et al.Effect of surface coating on antibacterial behavior of magnesium based metals[J]. Mater. Lett., 2011, 65: 3509 | [45] | Krulwich T A, Sachs G, Padan E.Molecular aspects of bacterial pH sensing and homeostasis[J]. Nat. Rev. Microbiol., 2011, 9: 330 | [46] | Li Y, Liu L N, Wan P, et al.Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250 | [47] | Zhang Y, Ren L, Li M, et al.Preliminary study on cytotoxic effect of biodegradation of magnesium on cancer cells[J]. J. Mater. Sci. Technol., 2012, 28: 769 | [48] | ?ekin E, Ipcioglu O M, Erkul B E, et al.The association of oxidative stress and nasal polyposis[J]. J. Int. Med. Res., 2009, 37: 325 | [49] | Valko M, Rhodes C J, Moncol J, et al.Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chem. Biol. Interact., 2006, 160: 1 | [50] | Dole M, Wilson F R, Fife W P.Hyperbaric hydrogen therapy: Apossible treatment for cancer[J]. Science, 1975, 190: 152 | [51] | Ma N, Chen Y M, Yang B C.Magnesium metal—A potential biomaterial with antibone cancer properties[J]. J. Biomed. Mater. Res., 2014, 102A: 2644 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|