Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1168-1180    DOI: 10.11900/0412.1961.2017.00247
  研究论文 本期目录 | 过刊浏览 |
可降解医用镁合金在骨修复应用中的研究进展
袁广银1(), 牛佳林1,2
1 上海交通大学轻合金精密成型国家工程研究中心和金属基复合材料国家重点实验室 上海 200240
2 沪创医疗科技(上海)有限公司 上海 200232
Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications
Guangyin YUAN1(), Jialin NIU1,2
1 National Engineering Research Center of Light Alloys Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Innovation Medical Technology Co., Ltd., Shanghai 200232, China
引用本文:

袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
Guangyin YUAN, Jialin NIU. Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications[J]. Acta Metall Sin, 2017, 53(10): 1168-1180.

全文: PDF(6632 KB)   HTML
摘要: 

镁合金可在人体内完全降解,其弹性模量与人皮质骨接近,可有效避免应力遮挡效应,且具有较高的机械强度和良好的骨诱导性,因此镁合金作为骨修复材料具有很好的应用潜力,并受到广泛研究。本文对可降解医用镁合金材料在骨修复领域的研究进行了总结,分别从镁合金骨修复材料的优势,发展历史,存在的问题与挑战,近几年的研究进展等几个方面进行了阐述。文章最后介绍了上海交通大学轻合金精密成型国家工程研究中心团队在骨修复用镁合金方面的最新研究成果,以及为推动我国可降解医用镁合金的产业化进程方面所做的工作。

关键词 可降解医用镁合金骨修复生物降解性能生物相容性    
Abstract

Magnesium and its alloys exhibit high mechanical strength and good biocompatibility, and their modulus is similar to natural cortical bone, which could help to avoid the stress shielding effect. These advantages make them promising candidates for bone repair applications. This paper summarizes the advantages, history, challenges, and the recent research progress of biodegradable Mg alloys for orthopedic application. At last, it gives a detailed introduction of the latest researches of Shanghai Jiao Tong University on biodegradable Mg alloys, and related work to promote their clinical applications.

Key wordsbiodegradable Mg-based alloy    bone fixation    biodegradation behavior    biocompatibility
收稿日期: 2017-06-22     
ZTFLH:  TG146.22  
基金资助:国家高技术研究发展计划项目No.2015AA033603,国家自然科学基金项目No.51571143,上海市科委企业国际合作项目No.17440730700,2017年度上海市优秀学术带头人计划No.17XD1402100
作者简介:

作者简介 袁广银,男, 1970年生,教授

图1  镁离子促成骨机理示意图[13]
图2  德国Syntellix公司生产的MAGNEZIX?镁合金空心加压螺钉应用于脚拇指外翻手术[30]
图3  韩国U&i公司生产的K-MET镁合金螺钉应用手部骨折手术[33]
图4  JDBM和JDBM-DCPD样品照片
图5  JDBM和JDBM-DCPD骨板骨钉以及兔子胫骨骨折内固定手术
图6  JDBM和JDBM-DCPD螺钉植入兔子胫骨的降解形貌[92]
图7  骨板四点弯曲测试装置,及 JDBM、JDBM-DCPD和WE43骨板植入兔子胫骨不同时间后弯曲强度变化
图8  兔子下颌骨骨折内固定手术[93]
图9  JDBM-DCPD螺钉植入兔子颌骨后不同时间的降解剩余形貌[94]
图10  JDBM-DCPD螺钉植入18个月后组织切片观察[94]
图11  JDBM表面PLA/DCPD复合涂层的制备及其性能评价[95]
图12  沪创医疗科技(上海)有限公司生产的JDBM骨钉骨板产品原型
[1] Nagels J, Stokdijk M, Rozing P M.Stress shielding and bone resorption in shoulder arthroplasty[J]. J. Shoulder Elbow Surg., 2003, 12: 35
[2] Jacobs J J, Hallab N J, Skipor A K, et al.Metal degradation products: A cause for concern in metal-metal bearings?[J]. Clin. Orthop. Relat. Res., 2003, 417: 139
[3] Wang J Y, Wicklund B H, Gustilo R B, et al.Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro[J]. Biomaterials, 1996, 17: 2233
[4] Hollinger J O, Battistone G C.Biodegradable bone repair materials synthetic polymers and ceramics[J]. Clin. Orthop. Relat. Res., 1986, (207): 290
[5] Middleton J C, Tipton A J.Synthetic biodegradable polymers as orthopedic devices[J]. Biomaterials, 2000, 21: 2335
[6] Schmitz J P, Hollinger J O, Milam S B.Reconstruction of bone using calcium phosphate bone cements: A critical review[J]. J. Oral Maxillofac. Surg., 1999, 57: 1122
[7] Guo Y, Li Y B.The progress in biomaterials for the replacement of hard tissue[J]. World Sci-Tech. R&D, 2001, 23(1): 33(郭颖, 李玉宝. 骨修复材料的研究进展[J]. 世界科技研究与发展, 2001, 23(1): 33)
[8] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[9] Yuan G Y, Zhang X B, Niu J L, et al.Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Chin. J. Nonferrous Met., 2011, 21: 2476(袁广银, 章晓波, 牛佳林等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21: 2476)
[10] Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728
[11] Musso C G.Magnesium metabolism in health and disease[J]. Int. Urol. Nephrol., 2009, 41: 357
[12] Vormann J.Magnesium: Nutrition and metabolism[J]. Mol. Aspects Med., 2003, 24: 27
[13] Zhang Y F, Xu J K, Ruan Y C, et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat. Med., 2016, 22: 1160
[14] Payr E.Beitr?ge zur technik der blutgef?ss- und nervennaht nebst mittheilungen über die verwendung eines resorbirbaren metalles in der chirurgie[J]. Arch. Klin. Chir., 1900, 62: 67
[15] Lambotte A.Technique et indications de la prothèse perdue dans la traitement des fractures[J]. Presse Med. Belge, 1909, 17: 321
[16] Lambotte A.L'utilisation du magnésium comme matériel perdu dans l'ostéosynthèse[J]. Bull. Mém. Soc. Nat. Cir., 1932, 28: 1325
[17] Verbrugge J.Le matériel métallique résorbable en chirurgie osseuse[J]. Presse Méd., 1934, 23: 460
[18] Verbrugge J.L'utilisation du magnésium dans le traitement chirurgical des fractures[J]. Bull. Mém. Soc. Nat. Cir., 1937, 59: 813
[19] McBride E D. Absorbable metal in bone surgery: A further report on the use of magnesium alloys[J]. JAMA, 1938, 111: 2464
[20] Maier O.über die verwendbarkeit von leichtmetallen in der chirurgie (metallisches magnesium als reizmittel zur knochenneubildung)[J]. Deut. Z. Chir., 1940, 253: 552
[21] Troitskii V V, Tsitrin D N.The resorbing metallic alloy 'Osteosinthezit' as material for fastening broken bone[J]. Khirurgiia, 1944, 8: 41
[22] Znamenskii M S.Metallic osteosynthesis by means of an apparatus made of resorbing metal[J]. Khirurgiia, 1945, 12: 60
[23] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
[24] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[25] Witte F, Ulrich H, Rudert M, et al.Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response[J]. J. Biomed. Mater. Res., 2007, 81A: 748
[26] Witte F, Ulrich H, Palm C, et al.Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling[J]. J. Biomed. Mater. Res., 2007, 81A: 757
[27] Staiger M P, Kolbeinsson I, Kirkland N T, et al.Synthesis of topologically-ordered open-cell porous magnesium[J]. Mater. Lett., 2010, 64: 2572
[28] Geng F, Tan L L, Zhang B C, et al.Study on β-TCP coated porous Mg as a bone tissue engineering scaffold material[J]. J. Mater. Sci. Technol., 2009, 25: 123
[29] Helmecke P, Ezechieli M, Becher C, et al.Resorbable interference screws made of magnesium based alloy[J]. Biomed. Tech., 2013, 58, doi: 10.1515/bmt-2013-4074
[30] Windhagen H, Radtke K, Weizbauer A, et al.Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed. Eng., 2013, 12: 62
[31] Plaass C, Ettinger S, Sonnow L, et al.Early results using a biodegradable magnesium screw for modified chevron osteotomies[J]. J. Orthop. Res., 2016, 34: 2207
[32] Seitz J M, Lucas A, Kirschner M.Magnesium-based compression screws: A novelty in the clinical use of implants[J]. JOM, 2016, 68: 1177
[33] Lee J W, Han H S, Han K J, et al.Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 716
[34] Zhao D W, Huang S B, Lu F Q, et al.Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016, 81: 84
[35] Bondy S C.The neurotoxicity of environmental aluminum is still an issue[J]. Neuro Toxicology, 2010, 31: 575
[36] Verstraeten S V, Aimo L, Oteiza P I.Aluminium and lead: Molecular mechanisms of brain toxicity[J]. Arch. Toxicol., 2008, 82: 789
[37] El-Rahman S S A. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment)[J]. Pharmacol. Res., 2003, 47: 189
[38] Zhang H, Feng J, Zhu W F, et al.Chronic toxicity of rare-earth elements on human beings: Implications of blood biochemical indices in REE-high regions, South Jiangxi[J]. Biol. Trace Element Res., 2000, 73: 1
[39] Nakamura Y, Tsumura Y, Tonogai Y, et al.Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats[J]. Toxicol. Sci., 1997, 37: 106
[40] Kuhlmann J, Bartsch I, Willbold E, et al.Fast escape of hydrogen from gas cavities around corroding magnesium implants[J]. Acta Biomater., 2013, 9: 8714
[41] Zhao D L, Wang T T, Kuhlmann J, et al.In vivo monitoring the biodegradation of magnesium alloys with an electrochemical H2 sensor[J]. Acta Biomater., 2016, 36: 361
[42] Erinc M, Sillekens W H, Mannens R G T M, et al. Applicability of existing magnesium alloys as biomedical implant materials [A]. Magnesium Technology 2009[C]. San Francisco: Willy, 2009: 209
[43] Feyerabend F, Fischer J, Holtz J, et al.Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomater., 2010, 6: 1834
[44] Li Z J, Gu X, Lou S Q, et al.The development of binary Mg-Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29: 1329
[45] Wan Y Z, Xiong G Y, Luo H L, et al.Preparation and characterization of a new biomedical magnesium-calcium alloy[J]. Mater. Des., 2008, 29: 2034
[46] Rad H R B, Idris M H, Kadir M R A, et al. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys[J]. Mater. Des., 2012, 33: 88
[47] Cho S Y, Chae S W, Choi K W, et al.Biocompatibility and strength retention of biodegradable Mg-Ca-Zn alloy bone implants[J]. J. Biomed. Mater. Res., 2013, 101B: 201
[48] Zander D, Zumdick N A.Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys[J]. Corros. Sci., 2015, 93: 222
[49] Berglund I S, Brar H S, Dolgova N, et al.Synthesis and characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications[J]. J. Biomed. Mater. Res., 2012, 100B: 1524
[50] Zhang B P, Hou Y L, Wang X D, et al.Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions[J]. Mater. Sci. Eng., 2011, C31: 1667
[51] Huan Z G, Leeflang M A, Zhou J, et al.In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys[J]. J. Mater. Sci.-Mater. Med., 2010, 21: 2623
[52] Rosalbino F, De Negri S, Saccone A, et al.Bio-corrosion characterization of Mg-Zn-X (X=Ca, Mn, Si) alloys for biomedical applications[J]. J. Mater. Sci.-Mater. Med., 2010, 21: 1091
[53] Brar H S, Wong J, Manuel M V.Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials[J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 87
[54] Zhao X, Shi L L, Xu J.Biodegradable Mg-Zn-Y alloys with long-period stacking ordered structure: optimization for mechanical properties[J]. J. Mech. Behav. Biomed. Mater., 2013, 18: 181
[55] Lu Y, Bradshaw A R, Chiu Y L, et al.Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys[J]. Mater. Sci. Eng., 2015, C48: 480
[56] Zhang E L, Yin D S, Xu L P, et al.Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application[J]. Mater. Sci. Eng., 2009, C29: 987
[57] Liu M, Schmutz P, Uggowitzer P J, et al.The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys[J]. Corros. Sci., 2010, 52: 3687
[58] Zhang X B, Yuan G Y, Mao L, et al.Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys[J]. Mater. Lett., 2012, 66: 209
[59] Bornapour M, Muja N, Shum-Tim P, et al.Biocompatibility and biodegradability of Mg-Sr alloys: The formation of Sr-substituted hydroxyapatite[J]. Acta Biomater., 2013, 9: 5319
[60] Gu X N, Xie X H, Li N, et al.In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal[J]. Acta Biomater., 2012, 8: 2360
[61] Gu X N, Zheng Y F, Cheng Y, et al.In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30: 484
[62] Zhang E L, Yang L, Xu J W, et al.Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application[J]. Acta Biomater., 2010, 6: 1756
[63] Xu L P, Yu G N, Zhang E L, et al.In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application[J]. J. Biomed. Mater. Res., 2007, 83A: 703
[64] Sun X, Cao Z Y, Zhang J L, et al.Mechanical and corrosion properties of newly developed Mg-Mn-Ca alloys as potential biodegradable implant materials[J]. Corros. Eng. Sci. Technol., 2014, 49: 303
[65] Li Y C, Wen C E, Mushahary D, et al.Mg-Zr-Sr alloys as biodegradable implant materials[J]. Acta Biomater., 2012, 8: 3177
[66] Chiu K Y, Wong M H, Cheng F T, et al.Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants[J]. Surf. Coat. Technol., 2007, 202: 590
[67] Witte F, Fischer J, Nellesen J, et al.In vivo corrosion and corrosion protection of magnesium alloy LAE442[J]. Acta Biomater., 2010, 6: 1792
[68] Seitz J M, Collier K, Wulf E, et al.Comparison of the corrosion behavior of coated and uncoated magnesium alloys in an in vitro corrosion environment[J]. Adv. Eng. Mater., 2011, 13: B313
[69] Jo J H, Kang B G, Shin K S, et al.Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility[J]. J. Mater. Sci.-Mater. Med., 2011, 22: 2437
[70] Gu X N, Zheng W, Cheng Y, et al.A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate[J]. Acta Biomater., 2009, 5: 2790
[71] Narayanan T S N S, Park I S, Lee M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges[J]. Prog. Mater. Sci., 2014, 60: 1
[72] Gu X N, Li N, Zhou W R, et al.Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy[J]. Acta Biomater., 2011, 7: 1880
[73] Gao J H, Guan S K, Chen J, et al.Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy[J]. Appl. Surf. Sci., 2011, 257: 2231
[74] Wang H X, Guan S K, Wang X, et al.In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process[J]. Acta Biomater., 2010, 6: 1743
[75] Song Y, Zhang S X, Li J A, et al.Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior[J]. Acta Biomater., 2010, 6: 1736
[76] Keim S, Brunner J G, Fabry B, et al.Control of magnesium corrosion and biocompatibility with biomimetic coatings[J]. J. Biomed. Mater. Res., 2011, 96B: 84
[77] Zhang Y J, Zhang G Z, Wei M.Controlling the biodegradation rate of magnesium using biomimetic apatite coating[J]. J. Biomed. Mater. Res., 2009, 89B: 408
[78] Gray-Munro J E, Strong M. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31[J]. J. Biomed. Mater. Res., 2009, 90A: 339
[79] Wang Q, Tan L L, Xu W L, et al.Dynamic behaviors of a Ca-P coated AZ31B magnesium alloy during in vitro and in vivo degradations[J]. Mater. Sci. Eng., 2011, B176: 1718
[80] Hu J H, Zhang C L, Cui B H, et al.In vitro degradation of AZ31 magnesium alloy coated with nano TiO2 film by sol-gel method[J]. Appl. Surf. Sci., 2011, 257: 8772
[81] Roy A, Singh S S, Datta M K, et al.Novel sol-gel derived calcium phosphate coatings on Mg4Y alloy[J]. Mater. Sci. Eng., 2011, B176: 1679
[82] Wan Y Z, Xiong G Y, Luo H L, et al.Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium-calcium alloys[J]. Appl. Surf. Sci., 2008, 254: 5514
[83] Wu G S, Zeng X Q, Yao S S, et al. Ion implanted AZ31 magnesium alloy [J]. Mater. Sci. Forum, 2007, 546-549: 551
[84] Li J N, Cao P, Zhang X N, et al.In vitro degradation and cell attachment of a PLGA coated biodegradable Mg-6Zn based alloy[J]. J. Mater. Sci., 2010, 45: 6038
[85] Wong H M, Yeung K W K, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants[J]. Biomaterials, 2010, 31: 2084
[86] Zhang X B, Wang Z Z, Yuan G Y, et al.Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion[J]. Mater. Sci. Eng., 2012, B177: 1113
[87] Zhang X B, Yuan G Y, Mao L, et al.Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy[J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 77
[88] Zhang X B, Yuan G Y, Niu J L, et al.Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios[J]. J. Mech. Behav. Biomed. Mater., 2012, 9: 153
[89] Zhang X B, Yuan G Y, Wang Z Z.Mechanical properties and biocorrosion resistance of Mg-Nd-Zn-Zr alloy improved by cyclic extrusion and compression[J]. Mater. Lett., 2012, 74: 128
[90] Mao L, Yuan G Y, Wang S H, et al.A novel biodegradable Mg-Nd-Zn-Zr alloy with uniform corrosion behavior in artificial plasma[J]. Mater. Lett., 2012, 88: 1
[91] Zong Y, Yuan G Y, Zhang X B, et al.Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution[J]. Mater. Sci. Eng., 2012, B177: 395
[92] Niu J L, Yuan G Y, Liao Y, et al.Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating[J]. Mater. Sci. Eng., 2013, C33: 4833
[93] Guan X M, Xiong M P, Zeng F Y, et al.Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair[J]. ACS Appl. Mater. Interfaces, 2014, 6: 21525
[94] Niu J L, Xiong M P, Guan X M, et al.The in vivo degradation and bone-implant interface of Mg-Nd-Zn-Zr alloy screws: 18 months post-operation results[J]. Corros. Sci., 2016, 113: 183
[95] Zhang L, Pei J, Wang H D, et al.Facile preparation of poly(lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application[J]. ACS Appl. Mater. Interfaces, 2017, 9: 9437
[96] Qin H, Zhao Y C, An Z Q, et al.Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J]. Biomaterials, 2015, 53: 211
[1] 王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.
[2] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[3] 郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520.
[4] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.
[5] 王鲁宁, 孟瑶, 刘丽君, 董超芳, 岩雨. 可降解锌基生物材料的研究进展[J]. 金属学报, 2017, 53(10): 1317-1322.
[6] 东家慧, 谭丽丽, 杨柯. 可降解镁基金属骨缺损修复材料的研究探索[J]. 金属学报, 2017, 53(10): 1197-1206.
[7] 王青川, 张炳春, 任伊宾, 杨柯. 医用无镍不锈钢的研究与应用[J]. 金属学报, 2017, 53(10): 1311-1316.
[8] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[9] 梁春永, 郝静祖, 王洪水, 李宝娥, 夏丹. 金属植介入器件接触诱导表面的制备技术与研究进展[J]. 金属学报, 2017, 53(10): 1265-1283.
[10] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[11] 张静莹 齐民 杨大颐 艾红军. ZnHA/TiO2复合涂层的制备及生物相容性[J]. 金属学报, 2011, 47(4): 429-434.
[12] 徐文利 陆喜 谭丽丽 杨柯. 新型生物可降解Fe-30Mn-1C合金的性能研究[J]. 金属学报, 2011, 47(10): 1342-1347.