Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 1010-1018    DOI: 10.11900/0412.1961.2017.00451
  本期目录 | 过刊浏览 |
缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响
马政, 陆喜, 高明, 谭丽丽(), 杨柯
中国科学院金属研究所 沈阳 110016
Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy
Zheng MA, Xi LU, Ming GAO, Lili TAN(), Ke YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

马政, 陆喜, 高明, 谭丽丽, 杨柯. 缝隙腐蚀对Fe-30Mn-1C合金降解速率的影响[J]. 金属学报, 2018, 54(7): 1010-1018.
Zheng MA, Xi LU, Ming GAO, Lili TAN, Ke YANG. Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy[J]. Acta Metall Sin, 2018, 54(7): 1010-1018.

全文: PDF(10067 KB)   HTML
摘要: 

为了提高Fe-30Mn-1C合金的降解速率,采用激光技术,在样品上分别加工不同孔径的孔隙,将支架的设计与缝隙腐蚀结合起来,通过体外浸泡失重实验和电化学测试,研究了合金的降解行为,结果表明缝隙腐蚀可显著提高Fe-30Mn-1C合金的降解速率。

关键词 铁基合金可降解缝隙腐蚀心血管支架    
Abstract

Fe-30Mn-1C alloy has great potential to become degradable cardiovascular stent material due to its degradability, excellent comprehensive mechanical properties and biocompatibility. In this work, in order to improve the degradation rate of Fe-30Mn-1C alloy, laser technology was used to process pores with different pore diameters on the samples, and the design of the scaffold was combined with crevice corrosion. The degradation behavior of the alloy was studied through in vitro soaking weight loss experiments and electrochemical tests. The results showed that crevice corrosion can increase the degradation rate of Fe-30Mn-1C alloy significantly.

Key wordsiron-based alloy    biodegradable    crevice corrosion    cardiovascular stent
收稿日期: 2017-10-27     
ZTFLH:  R318.08  
基金资助:国家重点基础研究发展计划项目Nos.2012CB619101和2012CB619102,国家高技术研究发展计划项目No.2015AA033701
作者简介:

作者简介 马 政,男,1985年出生,博士

图1  Fe-30Mn-1C合金孔隙结构激光加工示意图
图2  Fe-30Mn-1C合金在Hank’s溶液中的降解速率
图3  不同孔径的Fe-30Mn-1C在Hank’s溶液中降解速率的增幅
图4  含不同大小孔径的Fe-30Mn-1C合金在Hank’s溶液中的宏观腐蚀形貌
图5  不同孔径的Fe-30Mn-1C合金在Hank’s溶液中的腐蚀形貌SEM像(酸洗前)
图6  不同孔径的Fe-30Mn-1C合金在Hank’s溶液中的腐蚀形貌SEM像 (酸洗后)
图7  Fe-30Mn-1C合金在Hank’s溶液中浸泡后的沉积层成分EDS结果
图8  含孔隙结构的Fe-30Mn-1C合金浸泡后的截面形貌及EDS面扫分析
图9  含不同大小孔径的Fe-30Mn-1C合金在Hank’s溶液中的截面腐蚀形貌
Pore size Surface area Adding rate
mm cm2 %
0.00 2.08 -
0.07 2.17 4.5
0.10 2.20 5.8
0.15 2.23 7.2
表1  不同孔径的Fe-30Mn-1C样品表面积
图10  含孔隙结构的Fe-30Mn-1C合金浸泡过程的降解机制示意图
[1] Li J J.Inflammatory response, drug-eluting stent and restenosis[J]. Chin. Med. J.(Engl.), 2008, 121: 566
[2] Li J J.The study on the occurrence of restenosis is a long-term problem in the interventional therapy of coronary heart disease[J]. Chin. Circ. J., 2008, 23: 401(李建军. 再狭窄发生的相关研究是冠心病介入治疗的长期课题[J]. 中国循环杂志, 2008, 23: 401)
[3] Zhou J, Ding Y.Thinking on the comparation of therapies on coronary heart disease[J]. Med. Philos.(Clin. Dec. Mak. Forum Ed.), 2006, 27(4): 36(周江, 丁彦. 冠心病治疗方法的比较思考[J]. 医学与哲学(临床决策论坛版), 2006, 27(4): 36)
[4] Wei L L, Liu P, Zhang H Y.Therapy choices for coronary heart disease[J]. Med. Philos.(Clin. Dec. Mak. Forum Ed.), 2009, 30(7): 8(魏来临, 刘平, 张华岩. 冠心病理想治疗方式的选择[J]. 医学与哲学(临床决策论坛版), 2009, 30(7): 8)
[5] Boden W E, O'Rourke R A, Teo K K, et al. Optimal medical therapy with or without PCI for stable coronary disease[J]. N. Engl. J. Med., 2007, 356: 1503
[6] Liu J, Cong H L.Progress of interventional therapy for coronary artery disease[J]. Med. Recapitul., 2008, 14: 2512(刘健, 丛洪良. 冠心病介入治疗的进展[J]. 医学综述, 2008, 14: 2512)
[7] Wu Y H, Zhou X C, Zheng Y F, et al.Research progress on biodegradable metallic endovascular stents[J]. Mater. China, 2012, 31(9): 27(吴远浩, 周晓晨, 郑玉峰等. 可降解金属血管支架研究进展[J]. 中国材料进展, 2012, 31(9): 27)
[8] Virtanen S.Biodegradable Mg and Mg alloys: Corrosion and biocompatibility[J]. Mater. Sci. Eng., 2011, B176: 1600
[9] Wagener V, Schilling A, Mainka A, et al.Cell adhesion on surface-functionalized magnesium[J]. ACS Appl. Mater. Interfaces, 2016, 8: 11998
[10] Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomater., 2010, 6: 1705
[11] Schinhammer M, Gerber I, Hanzi A C, et al.On the cytocompatibility of biodegradable Fe-based alloys[J]. Mater. Sci. Eng., 2013, C33: 782
[12] Purnama, A, Hermawan, H, Champetier, S, et al. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents[J]. Acta Biomater., 2013, 9: 8746
[13] Xu W L, Lu X, Tan L L, et al.Study on properties of a novel biodegradable Fe-30Mn-1C alloy[J]. Acta Metall. Sin., 2011, 47: 1342(徐文利, 陆喜, 谭丽丽等. 新型生物可降解Fe-30Mn-1C合金的性能研究[J]. 金属学报, 2011, 47: 1342)
[14] Francis A, Yang Y, Virtanen S, et al.Iron and iron-based alloys for temporary cardiovascular applications[J]. J. Mater. Sci.: Mater. Med., 2015, 26: 138
[15] Mouzou E, Paternoster C, Tolouei R, et al.In vitro degradation behavior of Fe-20Mn-1.2C alloy in three different pseudo-physiological solutions[J]. Mater. Sci. Eng., 2016, C61: 564
[16] Obayi C S, Tolouei R, Paternoster C, et al.Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants[J]. Acta Biomater., 2015, 17: 68
[17] Huang T, Cheng J, Zheng Y F.In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2014, C35: 43
[18] ?apek J, Vojtěch D.Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy[J]. Mater. Sci. Eng., 2014, C43: 494
[19] Zhang B H, Cong W B, Yang P.Metal Electrochemical Corrosion and Protection [M]. Beijing: Chemical Industry Press, 2005: 79(张宝宏, 从文博, 杨萍. 金属电化学腐蚀与防护 [M]. 北京: 化学工业出版社, 2005: 79)
[20] Hermawan H, Dubé D, Mantovani D. Development of degradable Fe-35Mn alloy for biomedical application [J]. Adv. Mater. Res., 2007, 15-17: 107
[21] Hermawan H, Purnama A, Dube D, et al.Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies[J]. Acta Biomater., 2010, 6: 1852
[22] Hermawan H, Moravej M, Dubé D, et al. Degradation behaviour of metallic biomaterials for degradable stents [J]. Adv. Mater. Res., 2007, 15-17: 113
[23] Xu W L.Study on Fe-based biodegradable metallic coronary artery stents [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(徐文利. 铁基可降解心血管支架材料研究 [D]. 沈阳: 中国科学院金属研究所, 2011)
[24] Gong M.Metal Corrosion Theory and Corrosion Control [M]. Beijing: Chemical Industry Press, 2009: 110(龚敏. 金属腐蚀理论及腐蚀控制 [M]. 北京: 化学工业出版社, 2009: 110)
[25] Liu D X.Corrosion and Protection of Materials [M]. Xi'an: Northwest Industrial University Press, 2006: 83(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 83)
[26] Zhu R Z.Corrosion Science of Metal [M]. Beijing: Metallurgical Industry Press, 1989: 132(朱日彰. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 1989: 132)
[1] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[2] 钱漪, 袁广银. 可降解锌合金血管支架的研究现状、面临的挑战与对策思考[J]. 金属学报, 2021, 57(3): 272-282.
[3] 郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520.
[4] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[5] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
[6] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[7] 郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展[J]. 金属学报, 2017, 53(10): 1227-1237.
[8] 东家慧, 谭丽丽, 杨柯. 可降解镁基金属骨缺损修复材料的研究探索[J]. 金属学报, 2017, 53(10): 1197-1206.
[9] 张小农, 左敏超, 张绍翔, 吴宏流, 王文辉, 陈文智, 倪嘉桦. 医用可降解血管支架临床研究进展[J]. 金属学报, 2017, 53(10): 1215-1226.
[10] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
[11] 徐秋发, 庞晓露, 刘泉林, 高克玮. 低合金钢和碳钢在90 ℃地下水模拟溶液中的缝隙腐蚀*[J]. 金属学报, 2014, 50(6): 659-666.
[12] 喻巧红, 刘超, 庞晓露, 刘泉林, 高克玮. Q235焊接接头的缝隙腐蚀行为[J]. 金属学报, 2014, 50(11): 1319-1326.
[13] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[14] 魏欣,董俊华,柯伟. 工业纯Ti在模拟高放废物地质处置环境中的缝隙腐蚀行为[J]. 金属学报, 2013, 49(6): 675-681.
[15] 徐文利 陆喜 谭丽丽 杨柯. 新型生物可降解Fe-30Mn-1C合金的性能研究[J]. 金属学报, 2011, 47(10): 1342-1347.