Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1207-1218    DOI: 10.11900/0412.1961.2015.00419
  本期目录 | 过刊浏览 |
高温合金铸锭均匀化程度对开坯热变形的再结晶影响
董建新(),李林翰,李浩宇,张麦仓,姚志浩
EFFECT OF EXTENT OF HOMOGENIZATION ON THE HOT DEFORMATION RECRYSTALLIZATION OF SUPERALLOY INGOT IN COGGING PROCESS
Jianxin DONG(),Linhan LI,Haoyu LI,Maicang ZHANG,Zhihao YAO
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(14184 KB)   HTML
摘要: 

利用OM, SEM和裂纹扩展速率测试等手段分析了GH4740H, GH4738, GH3625和690合金不同均匀化程度下的组织特征以及这些组织状态的热变形行为, 系统研究了合金均匀化工艺因素与再结晶的关联规律. 研究结果表明, 合金均匀化需要兼顾枝晶偏析消除带来的热塑性改善以及晶粒长大和氧化加剧所导致的后续热变形时的塑性下降; 合金未完全均匀化留下的残留枝晶间区域提供了再结晶形核位置, 提高再结晶形核率. 在相同热变形条件下, 有残留枝晶组织的试样再结晶程度明显高于完全均匀化、无枝晶组织的试样. 为此提出基于部分均匀化制度的高温合金均匀化开坯控制方法具有合理性.

关键词 高温合金均匀化开坯枝晶    
Abstract

The elimination of the segregation improves the thermo plasticity of superalloy ingot during the homogenization process, but coarser grain structure and high-temperature oxidation caused in further homogenization have an adverse impact on the thermo plasticity. The inheritance of coarse grain structure in the followed hot working process increases the tendency of cogging crack and makes the grain refining harder, leading to a lower yield of the final workpiece. The microstructure characteristics and their hot deformation behaviors of GH4740H, GH4738, GH3625 and 690 alloys under different homogenizations were investigated by means of microstructure analysis methods and crack propagation testing. The experimental results show that the reasonable homogenization processing needs to take into account the segregation elimination arising thermo plasticity addition, more to consider grain coarsing and severe oxidation leading to decrease plasticity. Based on the residue dendrites can provide more recrystalazation nucleation sites, the partial homogenization possessing probably exists rationality. This research work provides an exploratory study for the improvement of the homogenization-cogging process of superalloy.

Key wordssuperalloy    homogenization    cogging    dendrite
    
基金资助:*国家自然科学基金资助项目51571012

引用本文:

董建新,李林翰,李浩宇,张麦仓,姚志浩. 高温合金铸锭均匀化程度对开坯热变形的再结晶影响[J]. 金属学报, 2015, 51(10): 1207-1218.
Jianxin DONG, Linhan LI, Haoyu LI, Maicang ZHANG, Zhihao YAO. EFFECT OF EXTENT OF HOMOGENIZATION ON THE HOT DEFORMATION RECRYSTALLIZATION OF SUPERALLOY INGOT IN COGGING PROCESS. Acta Metall Sin, 2015, 51(10): 1207-1218.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00419      或      https://www.ams.org.cn/CN/Y2015/V51/I10/1207

Alloy C Cr Co Mo Nb Ti Al Fe Mn Zr Ni
GH4740H 0.034 25.08 20.08 - 1.62 1.66 1.404 0.06 - - Bal.
GH4738 0.045 19.35 13.52 4.92 - 3.12 1.430 - - 0.05 Bal.
GH3625 0.010 21.43 - 8.80 3.49 0.05 0.200 0.20 0.04 - Bal.
690 0.018 29.69 0.01 - 0.01 0.35 0.090 9.25 0.05 - Bal.
表1  铸锭的化学成分
图1  690合金原始铸锭R/2处的枝晶组织
图2  690合金均匀化过程中残余偏析指数和晶粒尺寸的变化
图3  不同均匀化处理后690合金的裂纹扩展曲线
图4  不同均匀化处理后690合金裂纹扩展断口形貌
图5  GH4740H合金原始铸锭R/2处的显微组织
图6  GH4740H合金在1110 ℃下均匀化8和24 h后的氧化层截面形貌
图7  GH4740H合金在1110 ℃下均匀化48 h后的氧化层截面形貌
图8  GH4740H合金在1170 ℃下均匀化8和48 h后的氧化层截面形貌
图9  GH4740H合金在1170 ℃下不同时间均匀化后的氧化层厚度
图10  GH3625合金铸态、保温态和变形态的显微组织
图11  GH3625合金不同状态下的Cr, Mo和Nb元素偏析指数
图12  热变形态GH3625合金形貌及EDS面扫描结果
图13  GH4738合金在1150 ℃下均匀化退火不同时间的显微组织
图14  不同均匀化程度GH4738合金试样在1150 ℃下以0.1 s-1变形量30%热变形的真应力-真应变曲线
图15  不同均匀化程度GH4738合金试样在1150 ℃, 0.1 s-1, 30%热变形条件下的中心大变形区金相组织
图16  含枝晶的GH4738合金铸态组织热变形中的再结晶位置
图17  GH4738铸态合金和均匀化12 h试样经1150 ℃, 0.1 s-1, 变形量30%热变形后中心区域的FESEM像
图18  GH4738铸态热压缩试样中心大变形区显微组织
Area As-cast Homogenized 3 h Homogenized 12 h
Center 1.852 1.677 1.193
Edge 2.079 1.864 1.323
表2  均匀化和变形程度对Ti元素偏析指数的影响
图19  铸态组织经完全均匀化和部分均匀化热处理后热变形前后组织变化示意图
[1] Semiatin S L, Kramb R C, Turner R E, Zhang F, Antony M M. Scr Mater, 2004; 51: 491
[2] Malara C, Radavich J. In: Loria E A ed., Superalloys 718, 625, 706 and Derivatives 2005, Warrendale: TMS, 2005: 25
[3] Ju Q, Ma H P, Fu X D, Wang M. Rare Met Mater Eng, 2012; 41: 310 (鞠 泉, 马惠萍, 符鑫丹, 王 明. 稀有金属材料与工程, 2012; 41: 310)
[4] Semiatin S L, Weaver D S, Fagin P N, Glavicic M G, Goetz R L, Frey N D, Kramb R C, Antony M M. Metall Mater Trans, 2005; 35A: 679
[5] Zhao Y X, Fu S H, Zhang S W, Tang X, Liu N, Zhang G Q. In: Ott E A, Groh J R, Banik A, Dempster I, Gabb T P, Helmink R, Liu X B, Mitchell A, Sjoberg G P, Wusatowska-Sarnekeds A eds., Superalloys 718 and Derivatives 2010, Warrendale: TMS, 2010: 271
[6] Semiatin S L, Weaver D S, Goetz R L, Thomas J P, Turner T J. Mater Sci Forum, 2007; 550: 129
[7] Kramb R C, Antony M M, Semiatin S L. Scr Mater, 2006; 54: 1645
[8] Kermanpur A, Wang W, Lee P D, McLean M. Mater Sci Technol, 2003; 19: 859
[9] Yao Z H, Dong J X, Zhang M C. Acta Metall Sin, 2011; 47: 1581 (姚志浩, 董建新, 张麦仓. 金属学报, 2011; 47: 1581)
[10] Li L H, Dong J X, Zhang M C, Yao Z H. Acta Metall Sin, 2014; 50: 821 (李林翰, 董建新, 张麦仓, 姚志浩. 金属学报, 2014; 50: 821)
[11] Wen D X, Lin Y C, Li H B, Chen X M, Deng J, Li L T. Mater Sci Eng, 2014; A591:183
[12] Yao Z H, Zhang M C, Dong J X. Metall Mater Trans, 2013; 44A: 3084
[13] Li H Y, Kong Y H, Chen G S, Xie L X, Zhu S G, Sheng X. Mater Sci Eng, 2014; A582: 368
[14] Xie X S, Dong J X, Fu S H, Zhang M C. Acta Metall Sin, 2010; 46: 1289 (谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289)
[15] Kong Y H, Liu R Y, Chen G S, Xie L X, Zhu S G. J Mater Eng Perform, 2013; 22: 1372
[16] Shi C X, Zhong Z Y. Acta Metall Sin, 2010; 46: 1281 (师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)
[17] Wang X H, Ward R M, Jacobs M H, Barratt M D. Metall Mater Trans, 2007; 39A: 449
[18] Miao Z J, Shan A D, Wu Y B, Lu J, Xu W L, Song H W. Trans Nonferrous Met Soc China, 2011; 21: 1009
[19] Tin S, Lee P D, Kermanpur A, Rist M, McLean M. Metall Mater Trans, 2005; 36A: 2493
[20] Yeom J T, Lee C S, Kima J H, Park N K. Mater Sci Eng, 2007; A449-451: 722
[21] Dandre C A, Roberts S M, Evans R W, Reed R C. Mater Sci Technol, 2000; 16: 14
[22] Wang P, Dong J X. Rare Met Mater Eng, 2014; 43: 2502 (王 璞, 董建新. 稀有金属材料与工程, 2014; 43: 2502)
[23] Luo K J, Zhang M C, Wang B S, Dong J X. Rare Met Mater Eng, 2011; 40: 605 (罗坤杰, 张麦仓, 王宝顺, 董建新. 稀有金属材料与工程, 2011; 40: 605)
[24] High Temperature Alloys Laboratory,Beijing Institute of Iron Steel.GH132 Alloy. Beijing: National Defence Industry Press, 1980: 26 (北京钢铁学院高温合金教研室编. GH132合金.北京: 国防工业出版社, 1980: 26)
[25] Wang J, Wu Y, Dong J X, Zhang M C, Xie X S, Xu F H. Rare Met Mater Eng, 2013; 42: 1908 (王 珏, 吴 赟, 董建新, 张麦仓, 谢锡善, 徐芳泓. 稀有金属材料与工程, 2013; 42: 1908)
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[3] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[4] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[5] 刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 新型钴基高温合金多尺度设计的研究现状与展望[J]. 金属学报, 2020, 56(1): 1-20.
[6] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[7] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[8] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[9] 杜金辉,吕旭东,董建新,孙文儒,毕中南,赵光普,邓群,崔传勇,马惠萍,张北江. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55(9): 1115-1132.
[10] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[11] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[12] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[13] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[14] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[15] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.