Please wait a minute...
金属学报  2014, Vol. 50 Issue (8): 905-912    DOI: 10.11900/0412.1961.2014.00057
  本期目录 | 过刊浏览 |
O, N和Ni含量对0Cr25Ni7Mo4N双相不锈钢热轧塑性的影响*
陈雨来1, 张泰然1, 王一德2, 李静媛2()
1 北京科技大学冶金工程研究院, 北京 100083
2 北京科技大学材料科学与工程学院, 北京 100083
EFFECTS OF O, N AND Ni CONTENTS ON HOT PLASTICITY OF 0Cr25Ni7Mo4N DUPLEX STAINLESS STEEL
CHEN Yulai1, ZHANG Tairan1, WANG Yide2, LI Jingyuan2()
1 Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

陈雨来, 张泰然, 王一德, 李静媛. O, N和Ni含量对0Cr25Ni7Mo4N双相不锈钢热轧塑性的影响*[J]. 金属学报, 2014, 50(8): 905-912.
Yulai CHEN, Tairan ZHANG, Yide WANG, Jingyuan LI. EFFECTS OF O, N AND Ni CONTENTS ON HOT PLASTICITY OF 0Cr25Ni7Mo4N DUPLEX STAINLESS STEEL[J]. Acta Metall Sin, 2014, 50(8): 905-912.

全文: PDF(7887 KB)   HTML
摘要: 

对不同O, N和Ni含量的0Cr25Ni7Mo4N双相不锈钢进行了1200 ℃, 4道次热轧实验. 利用OM, SEM和EBSD观察分析了实验钢的组织和夹杂物. 结果表明, 低O, N和Ni含量的实验钢热轧塑性良好. O含量为0.0059%的实验钢中夹杂物主要为Al2O3和MgO·Al2O3, 分布于晶粒内部, 未对热塑性造成不良影响. O含量为0.038%和0.046%的实验钢则发生了轧制边裂, 开裂处为α/γ相界, 相界内的大颗粒Cr2O3和MnO2夹杂是造成开裂的主要原因. 其中O含量较低(0.038%)的实验钢, 由于N和Ni含量过高, 使钢中γ相体积分数在热轧状态时高达60%. 过多的γ相降低了γ晶粒内部的总应变量, 使其不足以发生再结晶软化, 最终造成更严重的热轧开裂.

关键词 0Cr25Ni7Mo4N双相不锈钢相比例氧化物夹杂热塑性    
Abstract

In order to identity the effect of narrow composition control on the hot plasticity of duplex stainless steel, hot rolling test of OCr25Ni7Mo4N steels with various oxygen, nitrogen and nickel contents were performed at 1200 ℃ for 4 steps. The microstructures and inclusions were observed by OM, SEM and EBSD. The steels with the lowest oxygen, nitrogen and nickel contents showed excellent hot plasticity. The inclusions in the steel with 0.0059% oxygen were mainly Al2O3 and MgO·Al2O3, which distributed in the grain interior and did no harm to the hot plasticity of the steel. The steels containing 0.038% and 0.046% oxygen actually cracked at the sheet edge during hot rolling, which resulted from the large inclusion particles of Cr2O3 and MnO2 at the α/γ boundary. Furthermore, the reason for more serious cracking occurred in the steel containing 0.038% oxygen than that containing 0.046% oxygen was its relatively higher contents of nitrogen and nickel, making γ volume fraction of the steel as high as 60% in the hot rolling state. Excessive γ reduced its total strain, so that the inadequate stain did not induce the recrystallization of γ phase, which resulted in hot rolling cracking finally.

Key words0Cr25Ni7Mo4N duplex stainless steel    phase proportion    oxide inclusion    hot plasticity
收稿日期: 2014-01-27     
ZTFLH:  TG337.5  
基金资助:国家自然科学基金项目51174026;十二五国家科技支撑计划项目2012BAE04B02
作者简介: null

陈雨来, 男, 1970年生, 副教授

Steel C Cr Ni Mo Mn Si N P S Al O Fe
No.1 0.027 25.3 6.72 4.18 0.65 0.66 0.25 0.025 0.0040 0.098 0.0059 Bal.
No.2 0.015 24.7 8.33 4.06 0.08 0.16 0.34 0.012 0.0067 0.093 0.038 Bal.
No.3 0.012 23.9 6.43 4.38 0.17 0.18 0.29 0.011 0.0076 0.120 0.0465 Bal.
SAF 2507 ≤0.03 24.0~ 6.0~ 3.0~ ≤1.2 ≤1.0 0.24~ ≤0.035 - - - Bal.
26.0 8.0 5.0 0.32
表1  实验钢及SAF 2507双相不锈钢的化学成分
图1  1200 ℃经4道次热轧后0Cr25Ni7Mo4N双相不锈钢板的宏观形貌
图2  γ/α相比例对双相不锈钢高温下工艺塑性的影响[1]
Steel Cast Before rolled After rolled
No.1 41.47 49.02 37.55
No.2 29.51 36.23 27.93
No.3 40.53 45.39 32.01
表2  0Cr25Ni7Mo4N双相不锈钢不同工艺阶段的铁素体含量
图3  0Cr25Ni7Mo4N双相不锈钢的铸态和轧前组织的OM像
图4  实验钢中夹杂物在SEM下的高对比图
Steel Fraction of inclusions with different sizes / % Average Total
diameter / μm
Number / mm-2
0~5 μm 5~10 μm 10~15 μm >15 μm
No.1 84.21 15.79 0 0 4.04 197
No.2 17.86 21.45 49.98 10.71 11.02 554
No.3 18.02 27.03 41.44 13.51 10.68 1034
表3  实验钢中夹杂物的尺寸和数量
图5  实验钢中夹杂物SEM像及EDS分析
图6  实验钢中夹杂物的位置
图7  No.2钢热轧板裂纹处的夹杂物形貌和EDS分析
Steel Cast Before Rolled
No.1 300.6 301.6
No.2 291.3 303.9
No.3 298.0 305.7
表4  实验钢中γ相的显微硬度
图8  0Cr25Ni7Mo4N双相不锈钢热轧板侧面EBSD组织及变形分布
[1] Wu J. Duplex Stainless Steel. Beijing: Metallurgy Industry Press, 1999: 1
[1] (吴 玖. 双相不锈钢. 北京: 冶金工业出版社, 1999: 1)
[2] Fang Y L, Liu Z Y, Zhang W N, Wang G D, Song H M, Jiang L Z. Acta Metall Sin, 2010; 46: 641
[2] (方轶琉, 刘振宇, 张维娜, 王国栋, 宋红梅, 江来珠. 金属学报, 2010; 46: 641)
[3] Fan G W, Liu J, Han P D, Qiao G J. Mater Sci Eng, 2009; A515: 108
[4] Han Y, Zou D N, Chen Z Y, Fan G W, Zhang W. Mater Charact, 2011; 62: 198
[5] Chen L, Wang L M, Du X J. Acta Metall Sin, 2010; 46: 52
[5] (陈 雷, 王龙妹, 杜晓建. 金属学报, 2010; 46: 52)
[6] Iza-Mendia A, Pinol-Juez A, Urcola J J. Metall Mater Trans, 1998; 29A: 2975
[7] Alvarez-Armas I, Marinelli M C, Herenu S. Acta Mater, 2006; 54: 5041
[8] Jia N, Lin P R, Wang Y D. Acta Mater, 2008; 56: 782
[9] Weatherly G C, Hamble P, Borland D. Acta Metall, 1979; 27: 1815
[10] Dahmen U, Ferguson P, Westmacott K H. Acta Metall, 1984; 32: 803
[11] Qiu D, Zhang W Z. Acta Mater, 2007; 55: 6754
[12] Song Z, Zheng W, Feng H. J Iron Steel Res Int, 2013; 20: 83
[13] Song Z G, Wu J, Lin X J. J Iron Steel Res Int, 2011; 18: 64
[14] Fang Y L, Liu Z Y, Song H M. Mater Sci Eng, 2009; A526: 128
[15] Jiang Z L, Wu Y, Chen X Y, Bai F M, Liu X Y, Huang T G. J Mater Eng, 2002; (5): 30
[15] (姜忠良, 吴 严, 陈秀云, 白飞明, 刘秀赢, 黄铁光. 材料工程, 2002; (5): 30)
[16] Chen P D, Wang J H, Ma Z W. Phys Examination Test, 2012; 30(3): 11
[16] (陈培敦, 王俊海, 马正伟. 物理测试, 2012; 30(3): 11)
[17] Shen P, Yan H T, Yang Z, Yuan H. Hot Working Technol, 2013; 42(4): 50
[17] (申 鹏, 颜海涛, 杨 振, 袁 辉. 热加工工艺, 2013; 42(4): 50)
[18] Wu Z Z, Song Z G, Zheng W J, Chen B, Lu J S. Spec Steel, 2006; 27(4): 11
[18] (吴忠忠, 宋志刚, 郑文杰, 陈 斌, 陆建生. 特殊钢, 2006; 27(4): 11)
[19] Yang Q X, Wu J, Zhao H. Trans Mater Heat Treat, 2006; 26: 124
[19] (杨庆祥, 吴 晶, 赵 宏. 材料热处理学报, 2006; 26: 124)
[1] 邓亚辉, 杨银辉, 蒲超博, 倪珂, 潘晓宇. Mn23%CrNi型双相不锈钢高温拉伸行为的影响[J]. 金属学报, 2020, 56(7): 949-959.
[2] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[3] 杨文,张立峰,任英,段豪剑,张莹,肖向辉. 利用高分辨同步辐射Micro-CT定量三维表征含Ti铁素体不锈钢铸坯中氧化物夹杂*[J]. 金属学报, 2016, 52(2): 217-223.
[4] 安同邦,田志凌,单际国,魏金山. 保护气对1000 MPa级熔敷金属组织及力学性能的影响*[J]. 金属学报, 2015, 51(12): 1489-1499.
[5] 潘晓林 汪波 孙文儒 涂赣峰 郭守仁 胡壮麒. 均匀化处理对GH742合金热变形行为的影响[J]. 金属学报, 2012, 48(11): 1403-1408.
[6] 韦东滨; 韩静涛 . 热塑性变形条件下钢内部裂纹愈合的实验研究[J]. 金属学报, 2000, 36(6): 622-625 .
[7] 王新华;昌波;李景捷;张立;叶锦渭. 700-1000℃间含Nb钢铸坯的延塑性降低与Nb(C,N)析出[J]. 金属学报, 1997, 33(5): 485-491.