Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1317-1322    DOI: 10.11900/0412.1961.2017.00289
Orginal Article Current Issue | Archive | Adv Search |
Research Progress on Biodegradable Zinc-Based Biomaterials
Luning WANG1,2(), Yao MENG1, Lijun LIU1, Chaofang DONG2,3, Yu YAN3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Luning WANG, Yao MENG, Lijun LIU, Chaofang DONG, Yu YAN. Research Progress on Biodegradable Zinc-Based Biomaterials. Acta Metall Sin, 2017, 53(10): 1317-1322.

Download:  HTML  PDF(800KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, zinc, as an essential trace element, with its alloys has attracted increasing attention as new biodegradable metals because of its appropriate degradation rate and degradation behavior. In this stage, it appears that the fabrication and degradation mechanism of zinc alloys as biodegradable metal still needs abundant systematic study. This review summarizes progress towards biodegradable zinc alloys. It emphasizes the current understanding of physiological and biological benefits of zinc and its biocompatibility. Finally, the review provides an outlook on challenges in designing zinc-based stents of optimal mechanical properties and biodegradation rate.

Key words:  zinc alloy      implantation      biocompatibility      degradation     
Received:  12 July 2017     
ZTFLH:  TG146.13  
Fund: Supported by National Key Research and Development Program of China (No.2016YFC251100)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00289     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1317

Alloy Standard electrode Essential Intake of Effect on local Expected gaseous
potential (vs SCE) for trace element pH during corrosion product
pure matrix metal / V element (mgd-1) degradation
Fe alloy -0.44 Yes 6.0~20.0 Alkalescent None
Mg alloy -2.37 Yes 375~500 Alkalescent Hydrogen
Zn alloy -0.763 Yes 2.0~10.0 Alkalescent None
Table 1  Key properties and aspects of potential biodegradable metals [11]
Alloy Phase State Ultimate tensile Elongation Yield strength Ref.
strength / MPa % MPa
Zn-2Li Zn, LiZn4 Rolled 370 14.3 245 [21]
Zn-4Li 450 14 425
Zn-6Li 560 2 470
Zn-0.1Li Zn, LiZn4 Extruded 274±61 17±7 [22]
Zn-4Cu Zn, CuZn5 Extruded 270±10 51±2 250±10 [23]
Zn-Cu-0.1Mg Zn, CuZn5, Mg2Zn11 Extruded 380 8 345 [24]
Zn-xAg Zn, AgZn3 Extruded 203~287 32~39 150~242 [25]
(x=2.5, 5.0, 7.0)
Zn-1Ca Zn, CaZn13 Rolled 250 13 220 [26]
Zn-1Mg Zn, MgZn2 Rolled 240 12 190
Zn-1Sr Zn, SrZn13 Rolled 185 19.6 230
Zn-1Mg-1Ca Zn, CaZn13, MgZn2 Rolled 197 8.5 138 [27]
Zn-1Mg-1Sr Zn, SrZn13, MgZn2 Rolled 200 9.5 140
Zn-1Ca-1Sr Zn, SrZn13, CaZn13 Rolled 202 9 142
Zn-3Mg Zn, Mg2Zn11 Rolled 104 2.3 [28]
Homogenized 88 8.8
Table 2  Mechanical properties of zinc alloys[21-28]
[1] Grüntzig A, Vetter W, Meier B, et al.Treatment of renovascular hypertension with percutaneous transluminal dilatation of a renal-artery stenosis[J]. Lancet, 1978, 311: 801
[2] Lukenda J, Biocina-Lukenda D.Stent, endovascular prosthesis, net or strut? What would British dentist Charles Stent (1807-1885) have to say on all this?[J]. Lijec Vjesn, 2009, 131: 30
[3] Saito S.New horizon of bioabsorbable stent[J]. Catheter. Cardio. Int., 2005, 66: 595
[4] Moravej M, Mantovani D.Biodegradable metals for cardiovascular stent application: Interests and new opportunities[J]. Int. J. Mol. Sci., 2011, 12: 4250
[5] SSYLVIA Study Investigators.Stenting of symptomatic atherosclerotic lesions in the vertebral or intracranial arteries (SSYLVIA)[J]. Stroke, 2004, 35: 1388
[6] Palmerini T, Benedetto U, Biondizoccai G, et al.Long-term safety of drug-eluting and bare-metal stents: Evidence from a comprehensive network meta-analysis[J]. J. Am. Coll. Cardiol., 2015, 65: 2496
[7] Farooq V, Gogas B D, Serruys P W.Restenosis: Delineating the numerous causes of drug-eluting stent restenosis[J]. Circ. Cardiovasc. Interv., 2011, 4: 195
[8] Nishio S, Kosuga K, Igaki K, et al.Long-term (> 10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents clinical perspective[J]. Circulation., 2012, 125: 2343
[9] Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta. Biomater., 2010, 6: 1705
[10] Kuhlmann J, Bartsch I, Willbold E, et al.Fast escape of hydrogen from gas cavities around corroding magnesium implants[J]. Acta. Biomater., 2013, 9: 8714
[11] Seitz J M, Durisin M, Goldman J, et al.Recent advances in biodegradable metals for medical sutures: A critical review[J]. Adv. Healthc. Mater., 2015, 4: 1915
[12] Frederickson C J, Koh J Y, Bush A I.The neurobiology of zinc in health and disease[J]. Nat. Rev. Neurosci., 2005, 6: 449
[13] Chen W Q.The trace element zinc and human body's care[J]. stud. Trace Elem. Health., 2006, 23: 62(陈文强. 微量元素锌与人体健康[J]. 微量元素与健康研究, 2006, 23: 62)
[14] Qiu Q Q, Zhang Y, Xiong Y B, et al.Influence of zinc deficiency on children's health[J]. GD Trace Elem. Sci., 2011, 18: 14(邱清权, 张勇, 熊玉宝等. 缺锌对儿童健康的影响[J]. 广东微量元素科学, 2011, 18: 14)
[15] Trumbo P, Yates A A, Schlicker S, et al.Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc[J]. J Am. Diet. Assoc., 2001, 101: 294
[16] Hennig B, Toborek M, McClain C J. Antiatherogenic properties of zinc: Implications in endothelial cell metabolism[J]. Nutrition., 1996, 12: 711
[17] Wu W, Gastaldi D, Yang K, et al.Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels[J]. Mater. Sci. Eng., 2011, B176: 1733
[18] Bowen P K, Shearier E R, Zhao S, et al.Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn alloys[J]. Adv. Healthc. Mater., 2016, 5: 1121
[19] Zhang S X, Zhang X N, Zhao C L, et al.Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater., 2010, 6: 626
[20] Guillory R J, Bowen P K, Hopkins S P, et al.Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants[J]. ACS Biomater. Sci. Eng., 2016, 2: 2355
[21] Zhao S, McNamara C T, Bowen P K, et al. Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling[J]. Metall. Mater. Trans., 2017, 48A: 1204
[22] Zhao S, Seitz J M, Eifler R, et al.Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat[J]. Mater. Sci. Eng., 2017, C76: 301
[23] Niu J L, Tang Z B, Huang H, et al.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J]. Mater. Sci. Eng., 2016, C69: 407
[24] Tang Z B, Huang H, Niu J L, et al.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J]. Mater. Des., 2017, 117: 84
[25] Sikora-Jasinska M, Mostaed E, Mostaed A, et al.Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn Ag alloys for degradable implant applications[J]. Mater. Sci. Eng., 2017, C77: 1170
[26] Li H F, Xie X H, Zheng Y F, et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. Sci. Rep., 2015, 5: 10719
[27] Li H F, Yang X H, Zheng Y F, et al.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J]. Mater. Des., 2015, 83: 95
[28] Dambatta M S, Izman S, Kurniawan D, et al.Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material[J]. Mater. Des., 2015, 85: 431
[29] Chen Y Q, Zhang W T, Maitz M F, et al.Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline[J]. Corros. Sci., 2016, 111: 541
[30] T?rne K, Larsson M, Norlin A, et al.Degradation of zinc in saline solutions, plasma, and whole blood[J]. J Biomed Mater Res., 2015, 104: 1141
[31] Liu X W, Sun J K, Yang Y H, et al.In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material[J]. Mater. Lett. , 2015, 161: 53
[32] Shearier E R, Bowen P K, He W L, et al.In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc[J]. ACS Biomater. Sci. Eng., 2016, 2: 634
[33] T?rne K, ?rnberg A, Weissenrieder J.Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments[J]. Acta. Biomater., 2017, 48: 541
[34] Xiang R, Ding D B, Fan L L, et al.Antibacterial mechanism and safety of zinc oxide[J]. Chin. J. Tissue Eng. Res., 2014, 18: 470(项荣, 丁栋博, 范亮亮等. 氧化锌的抗菌机制及其安全性研究进展[J]. 中国组织工程研究, 2014, 18: 470)
[35] Zhang B, Zhou P Y, Qiu C, et al.Experimental study on the antibacterial property and cytocompatibility of medical biodegradable zinc alloy materials in vitro[J]. Chin. J. Injury Repair Wound Healing, 2016, 11: 191(张波, 周潘宇, 邱超等. 医用可降解锌合金材料抗菌性能及细胞相容性的体外实验研究[J]. 中华损伤与修复杂志(电子版), 2016, 11: 191)
[36] Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[37] Zberg B, Uggowitzer P J, L?ffler J F.MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants[J]. Nat. Mater., 2009, 8: 887
[38] Bowen P K, Guillory R J, Shearier E R, et al.Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J]. Mater. Sci. Eng., 2015, C56: 467
[1] WANG Luning, YIN Yuxia, SHI Zhangzhi, HAN Qianqian. Research Progress on Biocompatibility Evaluation of Biomedical Degradable Zinc Alloys[J]. 金属学报, 2023, 59(3): 319-334.
[2] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[3] SHEN Gang, ZHANG Wentai, ZHOU Chao, JI Huanzhong, LUO En, ZHANG Haijun, WAN Guojiang. Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy[J]. 金属学报, 2022, 58(6): 781-791.
[4] ZHENG Yufeng, XIA Dandan, SHEN Yunong, LIU Yunsong, XU Yuqian, WEN Peng, TIAN Yun, LAI Yuxiao. Additively Manufactured Biodegrabable Metal Implants[J]. 金属学报, 2021, 57(11): 1499-1520.
[5] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[6] Guangyin YUAN, Jialin NIU. Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications[J]. 金属学报, 2017, 53(10): 1168-1180.
[7] Yufeng ZHENG, Hongtao YANG. Research Progress in Biodegradable Metals forStent Application[J]. 金属学报, 2017, 53(10): 1227-1237.
[8] Ying ZHAO, Lilan ZENG, Tao LIANG. Development in Biocompatibility of Biodegradable Magnesium-Based Metals[J]. 金属学报, 2017, 53(10): 1181-1196.
[9] Lili TAN, Junxiu CHEN, Xiaoming YU, Ke YANG. Recent Advances on Biodegradable MgYREZrMagnesium Alloy[J]. 金属学报, 2017, 53(10): 1207-1214.
[10] Chunyong LIANG, Jingzu HAO, Hongshui WANG, Baoe LI, Dan XIA. Preparation and Research Progress of Contact-Induced Surface of Metal Implants[J]. 金属学报, 2017, 53(10): 1265-1283.
[11] HUANG Yuan KONG Deyue HE Fang WANG Yulin LIU Wenxi. PREPARATION OF Mo/Ag LAMINAR COMPOSITES BY USING IRRADIATION DAMAGE ALLOYING METHOD[J]. 金属学报, 2012, 48(10): 1253-1259.
[12] ZOU Guangping LU Jie CAO Yang LIU Baojun. BENDING FATIGUE DAMAGE MODELS OF STEEL HONEYCOMB SANDWICH PANELS[J]. 金属学报, 2011, 47(9): 1181-1187.
[13] HAN En--Hou. RESEARCH TRENDS ON MICRO AND NANO--SCALE MATERIALS DEGRADATION IN NUCLEAR POWER PLANT[J]. 金属学报, 2011, 47(7): 769-776.
[14] ZHANG Jingying QI Min YANG Dayi AI Hongjun. PREPARATION AND BIOCOMPATIBILITY OF ZnHA/TiO2 HYBRID COATING[J]. 金属学报, 2011, 47(4): 429-434.
[15] LEI Mingkai WANG Kesheng OU Yi Xiang ZHANG Lei. PLASMA–BASED LOW–ENERGY NITROGEN ION IMPLANTATION OF 2Cr13 MARTENSITIC STAINLESS STEEL USED IN PUMPS AND VALVES[J]. 金属学报, 2011, 47(12): 1490-1494.
No Suggested Reading articles found!