Please wait a minute...
金属学报  2012, Vol. 48 Issue (3): 329-333    DOI: 10.3724/SP.J.1037.2011.00703
  论文 本期目录 | 过刊浏览 |
定向凝固多孔Cu热沉传热性能的实验研究
陈刘涛, 张华伟, 刘源, 李言祥
清华大学机械工程系, 先进成形制造教育部重点实验室, 北京 100084
EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK
CHEN Liutao, ZHANG Huawei, LIU Yuan, LI Yanxiang
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
引用本文:

陈刘涛 张华伟 刘源 李言祥. 定向凝固多孔Cu热沉传热性能的实验研究[J]. 金属学报, 2012, 48(3): 329-333.
, , , . EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. Acta Metall Sin, 2012, 48(3): 329-333.

全文: PDF(1661 KB)  
摘要: 利用定向凝固多孔Cu制备了气孔呈定向规则排布的多孔Cu热沉, 对沿孔长方向长度20 mm热沉的传热性能进行了实验研究. 实验结果表明, 定向凝固多孔Cu热沉具有优异的传热性能, 当气孔率为29%, 平均孔径为400 μm时, 热沉的换热系数可以达到5 W/(cm2·K), 沿孔长垂直方向将定向凝固多孔Cu切割成沿孔长方向排列的2段后, 其换热系数可以提高到\linebreak 6.5 W/(cm2·K). 这说明当定向凝固多孔Cu沿孔长方向的长度较大时, 通孔率降低限制了热沉的传热性能.
关键词 热沉微通道冷却多孔金属金属-气体共晶定向凝固    
Abstract:Porous copper with long cylindrical pores has been fabricated by unidirectional solidification of metal-gas eutectic system, which can be used to manufacture a special kind of micro-channel heat sink. The heat transfer performance of the directionally solidified porous copper heat sink with a length of 20 mm along the axial direction of pores was studied. The experimental results show that the directionally solidified porous copper heat sink has excellent heat transfer performance and a heat transfer coefficient of 5 W/(cm2·K) is attainable when a porosity is 29% and mean pore diameter is\linebreak 400 μm, and it shows a larger heat transfer coefficient of 6.5 W/(cm2·K) after cutting the porous copper along the vertical direction of pore axis into two sections alined in the direction of pore axis. Increasing the length of porous copper heat sink along the direction of pore axis will reduce the penetration ratio of pores and then weaken the heat transfer performance of the heat sink. Thus some methods have to be taken to increase the pore length and ratio of penetrating pores when fabricating directionally solidified porous copper heat sink.
Key wordsheat sink    micro-channel cooling    porous metal    metal-gas eutectic    unidirectional solidification
收稿日期: 2011-11-14     
ZTFLH: 

TG24

 
基金资助:

国家自然科学基金--云南联合基金项目U0837603, 北京市自然科学基金项目2092017, 国家自然科学基金青年科学基金项目51101092, 先进成形制造教育部重点实验室开放基金项目2010011资助

作者简介: 陈刘涛, 男, 1984年生, 博士生
[1] Shapovalov V I. MRS Bull, 1994; 4: 24

[2] Liu Y, Li Y X, Zhang H W, Wan J. Acta Metall Sin, 2005; 41: 886

(刘源, 李言祥, 张华伟, 万 疆. 金属学报, 2005; 41: 886)

[3] Liu Y, Li Y X, Wan J, Zhang H W. Mater Sci Eng, 2005; A402: 47

[4] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1165

(张华伟, 李言祥, 刘源. 金属学报, 2006; 42: 1165)

[5] Li Y X, Liu Y, Zhang H W, Wang X. In: Nakajima H, Kanetake N eds., Proceedings of MetFoam 2005, Sendai: The Japan Institute of Metals, 2006: 237

[6] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1171

(张华伟, 李言祥, 刘源. 金属学报, 2006; 42: 1171)

[7] Wang X, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1075

(王雪, 李言祥, 刘 源. 金属学报, 2006; 42: 1075)

[8] Kov´aˇcik J. Acta Mater, 1998; 46: 5413

[9] Hyun S K, Murakami H, Nakajima H. Mater Sci Eng, 2001; A299: 241

[10] Ogushi T, Chiba H, Nakajima H, Ikeda T. J Appl Phys, 2004; 95: 5843

[11] Chiba H, Ogushi T, Nakajima H, Torji K, Tomimura T, Ono F. J Appl Phys, 2008; 103: 013515

[12] Tane M, Hyun S K, Nakajima H. J Appl Phys, 2005; 97: 103701

[13] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Eng, 2004; A386: 390

[14] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Forum, 2004; 449–452: 661

[15] Mahajan R, Nair R, Wakharkar V, Swan J, Tang J, Vandentop G. Intel Technol J, 2002; 6: 61

[16] Tuckerman D B, Pease R F W. IEEE Electron Dev Lett, 1981; 2: 126

[17] Rosa P, Karayiannis T G, Collins M W. Appl Therm Eng, 2009; 29: 3447

[18] Wei X J. J Electron Packaging, 2004; 126: 60

[19] Ogushi T, Chiba H, Nakajima H. In: Nakajima H, Kanetake N eds., Proceedings of MetFoam 2005, Sendai: The Japan Institute of Metals, 2006: 27

[20] Chiba H, Ogushi T, Nakajima H. In: Nakajima H, Kanetake N eds., Proceedings of MetFoam 2005, Sendai: The Japan Institute of Metals, 2006: 35

[21] Li M. Master Dissertation, Tsinghua University, Beijing, 2002

(李勐. 清华大学硕士学位论文, 北京, 2002)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[5] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
[9] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[10] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[11] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[12] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[14] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[15] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.