|
|
金属基复合材料高通量制备及表征技术研究进展 |
张学习1, 郑忠1, 高莹2, 耿林1( ) |
1 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001 2 北京空间飞行器总体设计部 北京 100086 |
|
Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites |
Xuexi ZHANG1, Zhong ZHENG1, Ying GAO2, Lin GENG1( ) |
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2 Institute of Spacecraft System Engineering, Beijing 100086, China |
引用本文:
张学习, 郑忠, 高莹, 耿林. 金属基复合材料高通量制备及表征技术研究进展[J]. 金属学报, 2019, 55(1): 109-125.
Xuexi ZHANG,
Zhong ZHENG,
Ying GAO,
Lin GENG.
Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites[J]. Acta Metall Sin, 2019, 55(1): 109-125.
[1] | Huang L J, Geng L, Peng H X.Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?[J]. Prog. Mater. Sci., 2015, 71: 93 | [2] | Hattrick-Simpers J, Wen C, Lauterbach J.The materials super highway: Integrating high-throughput experimentation into mapping the catalysis materials genome[J]. Catal. Lett., 2015, 145: 290 | [3] | Zhao J C.A perspective on the materials genome initiative[J]. Chin. J. Nat., 2014, 36: 89(赵继成. 材料基因组计划简介[J]. 自然杂志, 2014, 36: 89) | [4] | Mao S S.High throughput growth and characterization of thin film materials[J]. J. Cryst. Growth, 2013, 379: 123 | [5] | Jin Z W, Murakami M, Fukumura T, et al. Combinatorial laser MBE synthesis of 3d ion doped epitaxial ZnO thin films [J]. J. Cryst. Growth, 2000, 214-215: 55 | [6] | Zhao J C, Jackson M R, Peluso L A, et al.A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus[J]. JOM, 2002, 54(7): 42 | [7] | Zhao J C.High-throughput experimental tools for the Materials Genome Initiative[J]. Chin. Sci. Bull., 2014, 58: 3647(赵继成. 材料基因组计划中的高通量实验方法[J]. 科学通报, 2013, 58: 3647) | [8] | Wang X, Zhu L L, Fang J, et al.Applications of "Materials Genome Engineering" based methods in nickel-based superalloys[J]. Sci. Technol. Rev., 2015, 33(10): 79(王薪, 朱礼龙, 方姣等. 基于“材料基因组工程”的3种方法在镍基高温合金中的应用[J]. 科技导报, 2015, 33(10): 79) | [9] | Wang J S, Yoo Y, Gao C, et al.Identification of a blue photoluminescent composite material from a combinatorial library[J]. Science, 1998, 279: 1712 | [10] | Chen L, Bao J, Gao C, et al.Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system[J]. J. Comb. Chem., 2004, 6: 699 | [11] | Liu X N, Shen Y, Yang R T, et al.Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration[J]. Nano Lett., 2012, 12: 5733 | [12] | Kang N, Coddet P, Wang J, et al.A novel approach to in-situ produce functionally graded silicon matrix composite materials by selective laser melting[J]. Compos. Struct., 2017, 172: 251 | [13] | Shishkovsky I V, Nazarov P A, Kotoban D V, et al.Comparison of Additive Technologies for Gradient Aerospace Part Fabrication from Nickel-based Superalloys[M]. London: InTech Publ., 2015: 221 | [14] | Nikoli? V, Wurster S, Savan A, et al.High-throughput study of binary thin film tungsten alloys[J]. Int. J. Refract. Met. Hard Mater., 2017, 69: 40 | [15] | Huxtable S, Cahill D G, Fauconnier V, et al.Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials[J]. Nat. Mater., 2004, 3: 298 | [16] | Mccluskey P J, Zhao C W, Kfir O, et al.Precipitation and thermal fatigue in Ni-Ti-Zr shape memory alloy thin films by combinatorial nanocalorimetry[J]. Acta Mater., 2011, 59: 5116 | [17] | Kim H J, Han J H, Kaiser R, et al.High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams[J]. Rev. Sci. Instrum., 2008, 79: 045112 | [18] | Frick C P, Lang T W, Spark K, et al.Stress-induced martensitic transformations and shape memory at nanometer scales[J]. Acta Mater., 2006, 54: 2223 | [19] | Uchic M D, Dimiduk D M, Florando J N, et al.Sample dimensions influence strength and crystal plasticity[J]. Science, 2004, 305: 986 | [20] | Vlassak J J, Nix W D.A New bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films[J]. J. Mater. Res., 1992, 7: 3242 | [21] | Gregoire J M, McCluskey P J, Dale D, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses[J]. Scr. Mater., 2012, 66: 178 | [22] | McCluskey P J, Vlassak J J. Combinatorial nanocalorimetry[J]. J. Mater. Res., 2010, 25: 2086 | [23] | Lee D, Sim G D, Xiao K C, et al.Scanning AC nanocalorimetry study of Zr/B reactive multilayers[J]. J. Appl. Phys., 2013, 114: 214902 | [24] | Zhang Y B, Fan G H.Three-dimensional X-ray diffraction technique for metals science[J]. Mater. Chin., 2017, 36: 181(张玉彬, 范国华. 三维X射线衍射技术在金属材料研究中的应用[J]. 中国材料进展, 2017, 36: 181) | [25] | Sáfrán G."One-sample concept" micro-combinatory for high throughput TEM of binary films[J]. Ultramicroscopy, 2018, 187: 50 | [26] | Tsai P, Flores K M.A combinatorial strategy for metallic glass design via laser deposition[J]. Intermetallics, 2014, 55: 162 | [27] | Tsai P, Flores K M.A laser deposition strategy for the efficient identification of glass-forming alloys[J]. Metall. Mater. Trans., 2015, 46A: 3876 | [28] | Tsai P, Flores K M.High-throughput discovery and characterization of multicomponent bulk metallic glass alloys[J]. Acta Mater., 2016, 120: 426 | [29] | Wu H, Fan G H, Huang M, et al.Deformation behavior of brittle/ductile multilayered composites under interface constraint effect[J]. Int. J. Plast., 2017, 89: 96 | [30] | Onraet S, Luff D, Geers M, et al.Measurement of strain fields in the micron range [A]. 3rd International Micro Materials Conference and Poster Exhibition[C]. Berlin: Druckhaus Dresden GmbH, 2000: 578 | [31] | Muster T H, Trinchi A, Markley T A, et al.A review of high throughput and combinatorial electrochemistry[J]. Electrochim. Acta, 2011, 56: 9679 | [32] | Hanak J J.The "Multiple-Sample Concept" in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems[J]. J. Mater. Sci., 1970, 5: 964 | [33] | Wang H Z, Wang H, Ding H, et al.Progress in high-throughput materials synthesis and characterization[J]. Sci. Technol. Rev., 2015, 33(10): 31)(王海舟, 汪洪, 丁洪等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33(10): 31) | [34] | Potyrailo R, Rajan K, Stoewe K, et al.Combinatorial and high-throughput screening of materials libraries: Review of state of the art[J]. ACS Comb. Sci., 2011, 13: 579 | [35] | Yoo Y K, Xue Q Z, Chu Y S, et al.Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips[J]. Intermetallics, 2006, 14: 241 | [36] | Takeuchi I, Chang K, Sharma R P, et al.Microstructural properties of (Ba, Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method[J]. J. Appl. Phys., 2001, 90: 2474 | [37] | Wang N, Zhang X, Chen B, et al.Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source[J]. Lab Chip, 2012, 12: 3983 | [38] | Bergh S, Guan S H, Hagemeyer A, et al.Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system[J]. Appl. Catal., 2003, 254A: 67 | [39] | Guram A, Hagemeyer A, Lugmair C G, et al.Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis[J]. Adv. Synth. Catal., 2004, 346: 215 | [40] | Yan Z K, Zhang X K, Li G, et al.High-throughput combinatorial chemical bath deposition: The case of doping Cu(In, Ga)Se film with antimony[J]. Appl. Surf. Sci., 2018, 427: 1235 | [41] | Mao S S, Zhang X J.High-throughput multi-plume pulsed-laser deposition for materials exploration and optimization[J]. Engineering, 2015, 1: 367 | [42] | Fan H W, Shan L L, Meng H, et al.High-throughput production of nanodisperse hybrid membranes on various substrates[J]. J. Membr. Sci., 2018, 552: 177 | [43] | Wu H Y, Li J, Liu F, et al.A high-throughput methodology search for the optimum cooling rate in an advanced polycrystalline nickel base superalloy[J]. Mater. Des., 2017, 128: 176 | [44] | Goll D, Loeffler R, Hohs D, et al.Reaction sintering as a high-throughput approach for magnetic materials development[J]. Scr. Mater., 2018, 146: 355 | [45] | Ivanov R, Deschamps A, De Geuser F.High throughput evaluation of the effect of Mg concentration on natural ageing of Al-Cu-Li-(Mg) alloys[J]. Scr. Mater., 2018, 150: 156 | [46] | Chikyow T, Ahmet P, Nakajima K, et al.A combinatorial approach in oxide/semiconductor interface research for future electronic devices[J]. Appl. Surf. Sci., 2002, 189: 284 | [47] | Baufeld B, Van Der Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: Microstructure and mechanical properties[J]. Mater. Des., 2010, 31(suppl.1): S106 | [48] | Schwendner K I, Banerjee R, Collins P C, et al.Direct laser deposition of alloys from elemental powder blends[J]. Scr. Mater., 2001, 45: 1123 | [49] | Arnold C B, Serra P, Piqué A.Laser direct-write techniques for printing of complex materials[J]. MRS Bull., 2007, 32: 23 | [50] | Nian Q, Wang Y, Yang Y, et al.Direct laser writing of nanodiamond films from graphite under ambient conditions[J]. Sci. Rep., 2015, 4: 6612 | [51] | Zygmuntowicz J, Wiecińska P, Miazga A, et al.Al2O3/Ni functionally graded materials (FGM) obtained by centrifugal-slip casting method[J]. J. Therm. Anal. Calorim., 2017, 130: 123 | [52] | Solarek J, Aneziris C G, Biermann H.A new method for manufacturing graded refractories by localized hot uniaxial pressing[J]. Ceram. Int., 2017, 43: 14636 | [53] | Avci U, Temiz ?.A new approach to the production of partially graded and laminated composite material composed of SiC-reinforced 7039 Al alloy plates at different rates[J]. Composites, 2017, 131B: 76 | [54] | Cai Y Z, Cheng L F, Yin H F, et al.Preparation and mechanical properties of Ti3SiC2/SiC functionally graded materials[J]. Ceram. Int., 2017, 43: 6648 | [55] | Shishkovsky I, Kakovkina N, Sherbakov V.Graded layered titanium composite structures with TiB2 inclusions fabricated by selective laser melting[J]. Compos. Struct., 2017, 169: 90 | [56] | Uchic M D, Dimiduk D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing [J]. Mater. Sci. Eng., 2005, A400-401: 268 | [57] | Guo X L, Guo Q, Li Z Q, et al.Size and crystallographic orientation effects on the mechanical behavior of 4H-SiC micro-/nano-pillars[J]. Metall. Mater. Trans., 2018, 49A: 439 | [58] | Deng C F, Zhang X X, Wang D Z.Chemical stability of carbon nanotubes in the 2024Al matrix[J]. Mater. Lett., 2007, 61: 904 | [59] | Li J C, Zhang X X, Geng L.Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing[J]. Mater. Des., 2018, 144: 159 | [60] | Huang L J, Geng L, Fu Y, et al.Oxidation behavior of in situ TiCp/Ti6Al4V composite with self-assembled network microstructure fabricated by reaction hot pressing[J]. Corros. Sci., 2013, 69: 175 | [61] | Huang L J, Wang S, Geng L, et al.Low volume fraction in situ (Ti5Si3+Ti2C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti-SiC system[J]. Compos. Sci. Technol., 2013, 82: 23 | [62] | Huang M, Xu C, Fan G H, et al.Role of layered structure in ductility improvement of layered Ti-Al metal composite[J]. Acta Mater., 2018, 153: 235 | [63] | Wu H, Fan G H, Jin B C, et al.Fabrication and mechanical properties of TiBw/Ti-Ti(Al) laminated composites[J]. Mater. Des., 2016, 89: 697 | [64] | Collins F S, Morgan M, Patrinos A.The human genome project: Lessons from large-scale biology[J]. Science, 2003, 300: 286 | [65] | Isaacs E D, Marcus M, Aeppli G, et al.Synchrotron X-ray microbeam diagnostics of combinatorial synthesis[J]. Appl. Phys. Lett., 1998, 73: 1820 | [66] | Picos-Vega A, Ramírez-Bon R, Espinoza-Beltrán F J, et al. Physical properties of CdTe-Sb thin films [J]. Thin Solid Films, 1996, 290-291: 395 | [67] | Jiang R Z, Chu D.A combinatorial approach toward electrochemical analysis[J]. J. Electroanal. Chem., 2002, 527: 137 | [68] | Mardare A I, Yadav A P, Wieck A D, et al.Combinatorial electrochemistry on Al-Fe alloys[J]. Sci. Technol. Adv. Mater., 2016, 9: 035009 | [69] | Hassel A W, Lohrengel M M.The scanning droplet cell and its application to structured nanometer oxide films on aluminium[J]. Electrochim. Acta, 1997, 42: 3327 | [70] | Vegas A J, Anderson D G.High-throughput approaches[J]. Polym. Sci., 2012, 9A: 457 | [71] | Urquhart A J, Anderson D G, Taylor M, et al.High throughput surface characterisation of a combinatorial material library[J]. Adv. Mater., 2007, 19: 2486 | [72] | Orikasa Y, Maeda T, Koyama Y, et al.Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition[J]. J. Am. Chem. Soc., 2013, 135: 5497 | [73] | Zhou Y N, Yue J L, Hu E Y, et al.High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries[J]. Adv. Energy Mater., 2016, 6: 1600597 | [74] | Lyu Y, Liu Y L, Cheng T, et al.High-throughput characterization methods for lithium batteries[J]. J. Mater., 2017, 3: 221 | [75] | Meirer F, Cabana J, Liu Y, et al.Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy[J]. J. Synchrotron Radiat., 2011, 18: 773 | [76] | Li S Y, Beyerlein I J, Alexander D J, et al.Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling[J]. Acta Mater., 2005, 53: 2111 | [77] | Pouillerie C, Suard E, Delmas C.Structural characterization of Li1-z-xNi1+zO2 by neutron diffraction[J]. J. Solid State Chem., 2001, 158: 187 | [78] | Thibault D, Bocher P, Thomas M, et al.Residual stress characterization in low transformation temperature 13%Cr-4%Ni stainless steel weld by neutron diffraction and the contour method[J]. Mater. Sci. Eng., 2010, A527: 6205 | [79] | Wei T, Xiang X D, Wallace-Freedman W G, et al. Scanning tip microwave near-field microscope[J]. Appl. Phys. Lett., 1996, 68: 3506 | [80] | Gao C, Duewer F, Xiang X D.Quantitative microwave evanescent microscopy[J]. Appl. Phys. Lett., 1999, 75: 3005 | [81] | Oguchi H, Heilweil E J, Josell D, et al.Infrared emission imaging as a tool for characterization of hydrogen storage materials[J]. J. Alloys Compd., 2009, 477: 8 | [82] | Weiss P A W, Thome C, Maier W F. MS-Express: Data-extracting and -processing software for high-throughput experimentation with mass spectrometry[J]. J. Comb. Chem., 2004, 6: 520 | [83] | Hoffmann C, Schmidt H W, Schüth F.A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction[J]. J. Catal., 2001, 198: 348 | [84] | Sottmann J, Homs-Regojo R, Wragg D S, et al.Versatile electrochemical cell for Li/Na-ion batteries and high-throughput setup for combined operando X-ray diffraction and absorption spectroscopy[J]. J Appl. Crystallogr., 2016, 49: 1972 | [85] | Zhang X K, Xiang Y.Combinatorial approaches for high-throughput characterization of mechanical properties[J]. J. Mater., 2017, 3: 209 | [86] | Shapiro M J, Gounarides J S.NMR methods utilized in combinatorial chemistry research[J]. Prog. Nucl. Magn. Reson. Spectrosc., 1999, 35: 153 | [87] | Blümich B, Casanova F, Appelt S.NMR at low magnetic fields[J]. Chem. Phys. Lett., 2009, 477: 231 | [88] | Johann T, Brenner A, Schwickardi M, et al.Listening to catalysis—A real time parallel method for high throughput product analysis[J]. Catal. Today, 2003, 81: 449 | [89] | Meersschaut J, Vandervorst W.High-throughput ion beam analysis at imec[J]. Nucl. Instrum. Meth. Phys. Res., 2017, 406B: 25 | [90] | Rudneva M, Kozlova T, Zandbergen H W.New possibilities for in-situ electrical characterization of nanosamples at different temperatures combined with simultaneous TEM observations[J]. Microsc. Microanal., 2013, 19(suppl.2): 456 | [91] | Levine L E, Larson B C, Yang W G, et al.X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper[J]. Nat. Mater., 2006, 5: 619 | [92] | Nix W D, Gao H J.Indentation size effects in crystalline materials: A law for strain gradient plasticity[J]. J. Mech. Phys. Solids, 1998, 46: 411 | [93] | Hutchinson J W.Plasticity at the micron scale[J]. Int. J. Solids Struct., 2000, 37: 225 | [94] | Tymiak N I, Kramer D E, Bahr D F, et al.Plastic strain and strain gradients at very small indentation depths[J]. Acta Mater., 2001, 49: 1021 | [95] | Su H, Yeung E S.High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging[J]. J. Am. Chem. Soc., 2000, 122: 7422 | [96] | Vogt S, Chu Y S, Tkachuk A, et al.Composition characterization of combinatorial materials by scanning X-ray fluorescence microscopy using microfocused synchrotron X-ray beam[J]. Appl. Surf. Sci., 2004, 223: 214 | [97] | Linke S, Kühn J, N?rthemann K, et al.Sensor high throughput screening using photocurrent measurements in silicon[J]. Proc. Eng., 2012, 47: 1195 | [98] | Chen Y H, Yuan L J, Wang H Z.Investigation on original statistic distribution analysis of flat-bulb steel by laser ablation inductively coupled plasma mass spectrometry[J]. Metall. Anal., 2008, 29(9): 1(陈玉红, 袁良经, 王海舟. 球扁钢的激光剥蚀-电感耦合等离子体质谱原位统计分布分析研究[J]. 冶金分析, 2008, 29(9): 1) | [99] | Wang H Z.In situ statistical distribution analysis—A new technique for materials research and quality criterion[J]. Sci. China, 2002, 32B: 481(王海舟. 原位统计分布分析——材料研究及质量判据的新技术[J]. 中国科学, 2002, 32B: 481) | [100] | Li D L, Wang H Z.Original Position statistic distribution analysis for the sulfides in gear steels[J]. ISIJ Int., 2014, 54: 160 | [101] | Luo Q H, Li D L, Ma F C, et al.Original position statistic distribution analysis for inclusion of cross-section of stainless steel continuous casting slab[J]. Metall. Anal., 2013, 33(12): 1(罗倩华, 李冬玲, 马飞超 等. 不锈钢连铸板坯横截面夹杂物的原位统计分布分析 [J]. 冶金分析, 2013, 33(12): 1) | [102] | Huang X X, Wu G L, Zhong X Y, et al.Multi-scale and multi-dimensional characterization techniques for advanced materials[J]. J. Chin. Electr. Microsc. Soc., 2016, 35: 567(黄晓旭, 吴桂林, 钟虓 等. 先进材料多维多尺度高通量表征技术[J]. 电子显微学报, 2016, 35: 567) | [103] | Gao C, Xiang X D.Quantitative microwave near-field microscopy of dielectric properties[J]. Rev. Sci. Instrum., 1998, 69: 3846 | [104] | Ohtani M, Lippmaa M, Ohnishi T, et al.High throughput oxide lattice engineering by parallel laser molecular-beam epitaxy and concurrent X-ray diffraction[J]. Rev. Sci. Instrum., 2005, 76: 062218 | [105] | Nam K W, Bak S M, Hu E Y, et al.Cathode Materials: Combining in situ synchrotron X-Ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Adv. Funct. Mater., 2013, 23: 1046 | [106] | Zheng X, Cahill D G, Weaver R, et al.Micron-scale measurements of the coefficient of thermal expansion by time-domain probe beam deflection[J]. J. Appl. Phys., 2008, 104: 0735097 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|