Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 101-108    DOI: 10.11900/0412.1961.2018.00160
  本期目录 | 过刊浏览 |
蝶翅精细分级结构金属纳米复合材料的研究进展
杨诚智, 关玉, 陈世坤, 苏慧兰(), 张荻()
上海交通大学材料科学与工程学院金属基复合材料国家重点实验室 上海 200240
Research Progress on the Metal Nanocomposites with Butterfly Wing Hierarchical Structure
Chengzhi YANG, Yu GUAN, Shikun CHEN, Huilan SU(), Di ZHANG()
State Key Laboratory of Metal Matrix Composites, School of Materials Science and
引用本文:

杨诚智, 关玉, 陈世坤, 苏慧兰, 张荻. 蝶翅精细分级结构金属纳米复合材料的研究进展[J]. 金属学报, 2019, 55(1): 101-108.
Chengzhi YANG, Yu GUAN, Shikun CHEN, Huilan SU, Di ZHANG. Research Progress on the Metal Nanocomposites with Butterfly Wing Hierarchical Structure[J]. Acta Metall Sin, 2019, 55(1): 101-108.

全文: PDF(2315 KB)   HTML
摘要: 

具有精细分级结构的金属纳米复合材料耦合了多组分和结构功能化的综合优势,展现出优良的光学及催化性能,这对于材料结构功能的一体化设计及其在环境能源等领域的应用有着重要意义。本文以蝶翅模板为例,系统介绍了精细分级结构金属纳米复合材料的制备、性能和应用探索研究,并对该领域的未来发展进行展望。

关键词 分级结构金属纳米复合材料蝶翅模板    
Abstract

Metal nanocomposites with delicate hierarchical structure (MNDHS), which provide excellent optical and catalytic properties due to their multicomponent and structural functionalization, are of great significance for the design of structural and functional materials as well as the application in the field of environment and energy. Here, butterfly wing template is used as an example to introduce the research progress of MNDHS, including their fabrication, property and potential applications, and then their development in the future is prospected.

Key wordshierarchical structure    metal nanocomposites    butterfly wing template
收稿日期: 2018-04-24     
ZTFLH:  TB331  
基金资助:国家自然科学基金项目No.51572169,上海科学技术委员会项目Nos.15ZR1422400、14JC1403300及14520710100
作者简介:

作者简介 杨诚智,男,1994年生,硕士生

图1  不同蝴蝶的光学照片和鳞片的显微结构[15,16]
图2  以蝶翅为模板制备精细分级结构纳米Ag-Au复合材料[32]
图3  可见光和红外光下Au-蝶翅材料示意图[53]
[1] Srinivasarao M.Nano-optics in the biological world: Beetles, butterflies, birds, and moths[J]. Chem. Rev., 1999, 99: 1935
[2] Foottit R G, Adler P H.Insect Biodiversity: Science and Society[M]. Chichester: John Wiley & Sons, 2009: 1
[3] Potyrailo R A, Ghiradella H, Vertiatchikh A, et al.Morpho butterfly wing scales demonstrate highly selective vapour response[J]. Nat. Photonics, 2007, 1: 123
[4] Zhang W, Tian J L, Wang Y A, et al.Single porous SnO2 microtubes templated from Papilio maacki bristles: New structure towards superior gas sensing[J]. J. Mater. Chem., 2014, 2A: 4543
[5] Niu H, Zhou R, Cheng C, et al.Magnetron sputtering in the creation of photonic nanostructures derived from Sasakia Charonda Formosana-butterfly wings for applied in dye-sensitized solar cells[J]. J. Power Sources, 2016, 325: 598
[6] Tan Y W, Gu J J, Zang X N, et al.Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures[J]. Angew. Chem., 2011, 50: 8307
[7] Tan Y W, Gu J J, Xu L H, et al.High-density hotspots engineered by naturally piled-up subwavelength structures in three-dimensional copper butterfly wing scales for surface-enhanced Raman scattering detection[J]. Adv. Funct. Mater., 2012, 22: 1578
[8] Zhu S M, Yao F, Yin C, et al.Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation[J]. Micropor. Mesopor. Mater., 2014, 190: 10
[9] Kang S H, Tai T Y, Fang T H.Replication of butterfly wing microstructures using molding lithography[J]. Curr. Appl. Phys., 2010, 10: 625
[10] Wu F F, Liu L X, Feng L, et al.Improving the sensing performance of double gold gratings by oblique incident light[J]. Nanoscale, 2015, 7: 13026
[11] Fu R R, Liu G Q, Jia C, et al.Fabrication of silver nanoplate hierarchical turreted ordered array and its application in trace analyses[J]. Chem. Commun., 2015, 51: 6609
[12] Schreiber R, Do J, Roller E M, et al.Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds[J]. Nat. Nanotechnol., 2014, 9: 74
[13] Wang H, Min S X, Ma C, et al.Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting[J]. Nat. Commun., 2017, 8: 13592
[14] Zao Y, Chen S J, Yan C, et al.Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering[J]. Thin Solid Films, 2012, 520: 2701
[15] Yan R Y, Chen M, Zhou H, et al.Bio-inspired plasmonic nanoarchitectured hybrid system towards enhanced far red-to-near infrared solar photocatalysis[J]. Sci. Rep., 2016, 6: 20001
[16] Garrett N L, Vukusic P, Ogrin F, et al.Spectroscopy on the wing: Naturally inspired SERS substrates for biochemical analysis[J]. J. Biophotonics, 2009, 2: 157
[17] Song F, Su H L, Han J, et al.Fabrication and good ethanol sensing of biomorphic SnO2 with architecture hierarchy of butterfly wings[J]. Nanotechnology, 2009, 20: 495502
[18] Wang W L, Zhang W, Chen W X, et al.Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method[J]. Opt. Lett., 2013, 38: 169
[19] Parker A R.515 million years of structural colour[J]. J. Opt., 2000, 2A: R15
[20] Biró L P, Bálint Z, Kertész K, et al.Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair[J]. Phys. Rev., 2003, 67E: 021907
[21] Vukusic P, Sambles R, Lawrence C, et al.Sculpted-multilayer optical effects in two species of Papilio butterfly[J]. Appl. Opt., 2001, 40: 1116
[22] Liu N, Guo H C, Fu L W, et al.Three-dimensional photonic metamaterials at optical frequencies[J]. Nat. Mater., 2008, 7: 31
[23] Dong Q, Su H L, Cao W, et al.Biogenic synthesis of hierarchical hybrid nanocomposites and patterning of silver nanoparticles[J]. Mater. Chem. Phys., 2008, 110: 160
[24] Dong Q, Su H L, Zhang D.In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature[J]. J. Phys. Chem., 2005, 109B: 17429
[25] Huang J Y, Wang X D, Wang Z L.Controlled replication of butterfly wings for achieving tunable photonic properties[J]. Nano Lett., 2006, 6: 2325
[26] Zhang W, Zhang D, Fan T X, et al.Novel photoanode structure templated from butterfly wing scales[J]. Chem. Mater., 2009, 21: 33
[27] Zhu Y, Su H L, Chen Y F, et al.A facile synthesis of PdO-decorated SnO2 nanocomposites with open porous hierarchical architectures for gas sensors[J]. J. Am. Ceram. Soc., 2016, 99: 3770
[28] Tian J L, Zhang W, Gu J J, et al.Bioinspired Au-CuS coupled photothermal materials: Enhanced infrared absorption and photothermal conversion from butterfly wings[J]. Nano Energy, 2015, 17: 52
[29] Chen J J, Su H L, Song F, et al.Bioinspired Au/TiO2 photocatalyst derived from butterfly wing (Papilio Paris)[J]. J. Colloid Interf. Sci., 2012, 370: 117
[30] Mu Z D, Zhao X W, Xie Z Y, et al.In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS)[J]. J. Mater. Chem., 2013, 1B: 1607
[31] Guan Y, Yang C Z, Su H L, et al.Controllable synthesis of nano Ag-Au composites mimicking fine hierarchical structure of butterfly wings[J]. Acta Mater. Compos. Sin., 2018, 35: 242(关玉, 杨诚智, 苏慧兰等. 蝶翅精细分级结构纳米Ag-Au/蝶翅复合材料的可控制备[J]. 复合材料学报, 2018, 35: 242)
[32] Guan Y.Controllable synthesis of Ag-Au nanocomposites mimicking micro-nano structure of butterfly wings and research of SERS property [D]. Shanghai: Shanghai Jiao Tong University, 2018(关玉. 基于蝶翅微纳结构金银纳米复合材料的可控制备及SERS性能研究 [D]. 上海: 上海交通大学, 2018)
[33] Cecchini M P, Turek V A, Paget J, et al.Self-assembled nanoparticle arrays for multiphase trace analyte detection[J]. Nat. Mater., 2013, 12: 165
[34] Lee S J, Morrill A R, Moskovits M.Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2006, 128: 2200
[35] Pazos-Perez N, Wagner C S, Romo-Herrera J M, et al. Organized plasmonic clusters with high coordination number and extraordinary enhancement in Surface-Enhanced Raman Scattering (SERS)[J]. Angew. Chem., 2012, 51: 12688
[36] White II G V, Provost M G, Kitchens C L. Fractionation of surface-modified gold nanorods using gas-expanded liquids[J]. Ind. Eng. Chem. Res., 2012, 51: 5181
[37] Liu B Y, Zhang W, Lv H M, et al.Novel Ag decorated biomorphic SnO2 inspired by natural 3D nanostructures as SERS substrates[J]. Mater. Lett., 2012, 74: 43
[38] Koon D W, Crawford A B.Insect thin films as sun blocks, not solar collectors[J]. Appl. Opt., 2000, 39: 2496
[39] Tian J L, Zhang W, Fang X T, et al.Coupling of plasmon and 3D antireflection quasi-photonic crystal structure for enhancement infrared absorption[J]. J. Mater. Chem., 2015, 3C: 1672
[40] Jiang T F, Xie T F, Chen L P, et al.Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance[J]. Nanoscale, 2013, 5: 2938
[41] Mahmoud M A, Qian W, El-Sayed M A. Following charge separation on the nanoscale in Cu2O-Au nanoframe hollow nanoparticles[J]. Nano Lett., 2011, 11: 3285
[42] Jiang W Y, Bai S M, Wang L J, et al.Integration of multiple plasmonic and co-catalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution[J]. Small, 2016, 12: 1640
[43] Liu D Q, Zhang F, Fan T X.The surface enhanced Raman scattering performance of three-dimensional structures of butterfly with silver nano-particles[J]. J. Shandong Univ.(Eng. Sci.), 2016, 46(1): 93(刘德琦, 张帆, 范同祥. 蝶翅结构负载银颗粒表面增强拉曼散射性能[J]. 山东大学学报(工学版), 2016, 46(1): 93)
[44] Tan Y W.Research on synthesis and photoresponse property of metallic functional micro/nano structures mimicking butterfly wing scales [D]. Shanghai: Shanghai Jiao Tong University, 2013(谭勇文. 仿蝶翅微纳结构金属功能材料的制备及光响应特性研究 [D]. 上海: 上海交通大学, 2013)
[45] Chen J J, Su H L, You X L, et al.3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation[J]. Mater. Res. Bull., 2014, 49: 560
[46] Bai W S, Nie F, Zheng J B, et al.Novel silver nanoparticle-manganese oxyhydroxide-graphene oxide nanocomposite prepared by modified silver mirror reaction and its application for electrochemical sensing[J]. ACS Appl. Mater. Interfaces, 2014, 6: 5439
[47] Wang L, Zhang Y Y, Cheng C S, et al.A highly sensitive electrochemical biosensor for evaluation of oxidative stress based on the nanointerface of graphene nanocomposites blended with gold, Fe3O4, and platinum nanoparticles[J]. ACS Appl. Mater. Interfaces, 2015, 7: 5226
[48] Mohammadi A R, Graham T C M, Bennington C P J, et al. Development of a compensated capacitive pressure and temperature sensor using adhesive bonding and chemical-resistant coating for multiphase chemical reactors[J]. Sens. Actuators, 2010, 163A: 471
[49] Zheng X L, Guo D W, Shao Y L, et al.Photochemical modification of an optical fiber tip with a silver nanoparticle film: A SERS chemical sensor[J]. Langmuir, 2008, 24: 4394
[50] Zang X N, Gu J Y, Zhu S J, et al.Tunable optical photonic devices made from moth wing scales: A way to enlarge natural functional structures' pool[J]. J. Mater. Chem., 2011, 21: 13913
[51] Yang Q Q, Zhu S M, Peng W H, et al.Bioinspired fabrication of hierarchically structured, pH-tunable photonic crystals with unique transition[J]. ACS Nano, 2013, 7: 4911
[52] Lu T, Zhu S M, Ma J, et al.Bioinspired thermoresponsive photonic polymers with hierarchical structures and their unique properties[J]. Macromol. Rapid Commun., 2015, 36: 1722
[53] Zhang F Y, Shen Q C, Shi X D, et al.Infrared detection based on localized modification of Morpho butterfly wings[J]. Adv. Mater., 2015, 27: 1077
[54] Pris A D, Utturkar Y, Surman C, et al.Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures[J]. Nat. Photonics, 2012, 6: 195
[55] Chen J J, Su H L, Liu Y J, et al.Efficient photochemical hydrogen production under visible-light over artificial photosynthetic systems[J]. Int. J. Hydrogen Energy, 2013, 38: 8639
[1] 孙国元; 陈光; 陈国良 . 内生枝晶增塑锆基块体块金属玻璃复合材料[J]. 金属学报, 2006, 42(3): 331-336 .
[2] 肖伯律; 马宗义; 毕敬 . TiBw与TiCp原位增强钛复合材料的高温蠕变特性[J]. 金属学报, 2002, 38(9): 994-997 .
[3] 毕敬; 肖伯律; 马宗义 . SiCp/2024铝基复合材料的超塑性变形行为研究[J]. 金属学报, 2002, 38(6): 621-624 .
[4] 柳永宁; 楚丽平; 何家文; 杨盛良 . 循环变形提高SiC纤维增强铝基复合材料强度及塑性Ⅱ.理论分析[J]. 金属学报, 2002, 38(4): 381-384 .
[5] 柳永宁; 楚丽平; 何家文; 杨盛良 . 循环变形提高SiC纤维增强铝基复合材料强度及塑性Ⅰ.实验现象[J]. 金属学报, 2002, 38(4): 376-380 .
[6] 陈俊; 王执福; 边建华; 王晓民 . 原位TiC颗粒增强Fe-Cr-Ni基复合材料的高温蠕变行为[J]. 金属学报, 2001, 37(2): 207-211 .