δ Phase of Deformation Induced GH3625 Superalloy Hot-Extruded Tube" /> 形变诱导GH3625合金热挤压管材<i>δ</i>相的析出行为
Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 695-702    DOI: 10.11900/0412.1961.2016.00508
  本期目录 | 过刊浏览 |
形变诱导GH3625合金热挤压管材δ相的析出行为
丁雨田(),高钰璧,豆正义,高鑫,刘德学,贾智
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
Precipitation Behavior of δ Phase of Deformation Induced GH3625 Superalloy Hot-Extruded Tube
Yutian DING(),Yubi GAO,Zhengyi DOU,Xin GAO,Dexue LIU,Zhi JIA
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(6704 KB)   HTML  
摘要: 

采用XRD、SEM、EDS和Image-Pro Plus金相分析等方法测定了GH3625合金热挤压管材在不同冷变形量ε下经过800 ℃时效后δ相的析出含量,研究了冷变形对δ相的析出规律及析出动力学的影响。结果表明,δ相首先在形变孪晶界、晶界以及变形带上形核并析出,随后在晶内形核长大,并且随冷变形量的增加,δ相在变形带上析出量增加;随冷变形量的增加,δ相的形貌从针状向棒状或颗粒状转变;随着时效时间的延长,δ相的平均尺寸不断增大,长大规律符合LSW理论。当时效温度为800 ℃时,δ相的析出含量与时效时间的关系满足Avrami方程,且随冷变形量的增加,δ相的含量增加,时间指数n减小,δ相析出速率α增加,冷变形促进δ相的析出。Nb的溶质拖曳与δ相的钉扎共同作用抑制晶粒长大。ε=35%时,合金的硬度随保温时间的延长而增加,ε≥50%时硬度未发生明显变化。

关键词 GH3625高温合金冷变形δ相析出行为动力学    
Abstract

GH3625 alloy is a wrought nickel-based superalloy mainly used in aeronautical, aerospace, chemical, nuclear, petrochemical, and marine applications industry due to its good mechanical properties, processability, weldability and resistance to high-temperature corrosion on prolonged exposure to aggressive environments. However, in medium and high temperature environment during long-term service, the γ'' is a metastable phase, easily transformed into stable δ phase, or δ phase directly formed in the γ matrix so that alloy performance was deteriorated, leading to the result of alloy failure. At the present work, mass fraction of δ phase in GH3625 superalloy hot-extruded tube cold deformed to different reductions and then aged at 800 ℃ for different times, were measured by XRD. The effect of cold deformation on the law and kinetics of δ phase precipitation was investigated by SEM, EDS and Image-Pro Plus metallographic analysis. The results show that δ phase first precipitates at the deformation twin and grain boundaries as well as deformation bands, and then precipitates in the grains. The amount of δ phase at the deformation bands increases with the increase of cold deformation. The morphologies of δ phase change gradually from needles to spheroids or rodlike with increasing cold deformation. With the extend of ageing time, the average size of δ phase increases which grows according to LSW theory. At 800 ℃, the relationship between the precipitation content of δ phase and ageing time follows Avrami equation. As cold deformation increases, the content of δ phase increases, the time index n decreases, whereas the δ phase precipitation rate increases. Cold deformation promotes the precipitation of δ phase. The solute drags of Nb in soild solution and pinning of δ phase inhibits the grain growth during ageing process of cold deformed GH3625 superalloy hot-extruded tube. The hardness of the alloy increases with the extension of the holding time at ε =35% but no obvious change at ε ≥50%.

Key wordsGH3625 superalloy    cold deformation    δphase    precipitation behavior    kinetics
收稿日期: 2016-11-14      出版日期: 2017-02-17
基金资助:国家自然科学基金项目No.51661019和甘肃省重大科技专项项目No.145RTSA004

引用本文:

丁雨田,高钰璧,豆正义,高鑫,刘德学,贾智. 形变诱导GH3625合金热挤压管材δ相的析出行为[J]. 金属学报, 2017, 53(6): 695-702.
Yutian DING,Yubi GAO,Zhengyi DOU,Xin GAO,Dexue LIU,Zhi JIA. Precipitation Behavior of δ Phase of Deformation Induced GH3625 Superalloy Hot-Extruded Tube. Acta Metall, 2017, 53(6): 695-702.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00508      或      http://www.ams.org.cn/CN/Y2017/V53/I6/695

图1  GH3625合金中相析出的温度-时间-转变曲线[14,15]
图2  不同冷变形量及时效制度下GH3625合金热挤压管材XRD谱
ε / % Mass fraction / %
25 h 50 h 75 h 100 h
35 1.58 1.77 1.95 2.15
50 1.73 1.89 2.12 2.24
65 1.88 2.07 2.28 2.34
表1  不同冷变形量及时效制度下GH3625合金管材δ相的质量分数
图3  冷变形GH3625合金热挤压管材中δ相的SEM像及EDS
图4  不同保温时间下冷变形GH3625合金热挤压管材中δ相的SEM像
Holding time / h l?/ μm w? / μm
25 1.462 0.204
50 1.854 0.260
75 2.205 0.326
100 2.536 0.377
表2  不同保温时间下δ相的平均尺寸
图5  不同冷变形量下在800 ℃时δ相的平均尺寸与时效保温时间的关系
图6  冷变形GH3625合金热挤压管材在800 ℃时效温度下δ相的含量与时效时间的关系
图7  lg[-ln(1-Wδ/Ws)]与lgt的关系
ε / % α / s-n n
35 1.144×10-2 0.364
50 1.693×10-2 0.342
65 2.463×10-2 0.322
表3  δ相析出动力学参数
图8  冷变形量和时效时间对GH3625合金热挤压管材晶粒尺寸的影响
图9  冷变形量和时效时间对GH3625合金热挤压管材硬度的影响
[23] (Smallman R E著, 张人佶译. 现代物理冶金学 [M]. 北京: 冶金工业出版社, 1980: 176)
[24] Avrami M.Kinetics of phase change. II Transformation-time relations for random distribution of nuclei[J]. J. Chem. Phys., 1940, 8: 212
doi: 10.1063/1.1750631
[25] Yuan Z J, Liu J S, Zhang S H.Research on precipitation kinetics of δ-phase in GH4169 alloy[J]. J. Shenyang Ligong Univ., 2010, 29(2): 23
[25] (袁兆静, 刘劲松, 张士宏. GH4169合金δ相的析出动力学研究[J]. 沈阳理工大学学报, 2010, 29(2): 23)
[26] Liu W C, Chen Z L, Xiao F R, et al.Effect of cold rolling on the kinetics of δ phase precipitation in Inconel 718[J]. Acta Metall. Sin., 1998, 34: 1049
[26] (刘文昌, 陈宗霖, 肖福仁等. 冷轧变形对Inconel 718合金δ相析出动力学的影响[J]. 金属学报, 1998, 34: 1049)
[1] Guo J T.Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 342
[1] (郭建亭. 高温合金材料学(上册) [M]. 北京: 科学出版社, 2008: 342)
[2] Murr L E, Martinez E, Gaytan S M, et al.Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting[J]. Metall. Mater. Trans., 2011, 42A: 3491
doi: 10.1007/s11661-011-0748-2
[3] China Aeronautical Materials Handbook Compile Committee. China Aeronautical Materials Handbook [M]. 2nd Ed., Beijing: Standards Press of China, 2002
[3] (中国航空材料手册编委会. 中国航空材料手册 [M]. 第2版, 北京: 中国标准出版社, 2002)
[4] Paul C P, Ganesh P, Mishra S K, et al.Investigating laser rapid manufacturing for Inconel-625 components[J]. Opt. Laser Technol., 2007, 39: 800
doi: 10.1016/j.optlastec.2006.01.008
[5] Mittra J, Dubey J S, Banerjee S.Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel 625[J]. Scr. Mater., 2003, 49: 1209
doi: 10.1016/S1359-6462(03)00488-3
[6] Ye J.Nickel Base Superalloy [M]. Beijing: Science Press, 1978: 228
[6] (冶军. 美国镍基高温合金 [M]. 北京: 科学出版社, 1978: 228)
[7] Zhang H B.Inconel 625 alloy progress abroad[J]. Spec. Steel Technol., 2000(3): 69
[7] (张红斌. 国外Inconel 625合金的进展[J]. 特钢技术, 2000(3): 69)
[8] Cortial F, Corrieu J M, Vernot-Loier C.Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625[J]. Metall. Mater. Trans., 1995, 26A: 1273
doi: 10.1007/BF02670621
[9] Suave L M, Cormier J, Villechaise P, et al.Microstructural evolutions during thermal aging of alloy 625: Impact of temperature and forming process[J]. Metall. Mater. Trans., 2014, 45A: 2963
doi: 10.1007/s11661-014-2256-7
[10] Sundararaman M, Mukhopadhyay P, Banerjee S.Precipitation of the δ-Ni3Nb phase in two nickel base superalloys[J]. Metall. Mater. Trans., 1988, 19A: 453
[11] Di X J, Xing X X, Wang B S.Nucleation and coarsening mechanism of δ phase in Inconel 625 deposited metal[J]. Acta Metall. Sin., 2014, 50: 323
[11] (邸新杰, 邢希学, 王宝森. Inconel 625熔敷金属中δ相的形核与粗化机理[J]. 金属学报, 2014, 50: 323)
[12] Chen M H, He Y Q.Quantitative phase analysis of γ''-Ni3Nb、δ-Ni3Nb and other phases in superalloy GH-625 by X-ray diffraction[J]. Metall. Anal., 1989, 9(2): 1
[12] (陈名浩, 何银秋. 镍基合金中γ''-Ni3Nb和δ-Ni3Nb等相的衍射定量相分析[J]. 冶金分析, 1989, 9(2): 1)
[13] Zhao Y X.Cold deformation behaviors of GH625 alloy and their effects on the mechanical properties[J]. J. Mater. Eng., 2000, (9): 36
[13] (赵宇新. GH625合金的冷变形及其对力学性能的影响[J]. 材料工程, 2000, (9): 36)
doi: 10.3969/j.issn.1001-4381.2000.09.011
[14] Floreen S, Fuchs G E, Yang W J.The metallurgy of alloy 625 [A]. Superalloys 718625706 and Various Derivatives[M]. Warrendale, PA: TMS, 1994: 13
[15] Shoemaker L E.Alloys 625 and 725: Trends in properties and applications [A]. Superalloys 718, 625, 706 and Derivatives 2005[M]. Warrendale, PA: TMS, 2005: 409
[16] Liu W C, Xiao F R, Yao M, et al.Quantitative phase analysis of Inconel 718 by X-ray diffraction[J]. J. Mater. Sci. Lett., 1997, 16: 769
doi: 10.1023/A:1018553703030
[17] Singh R P, Hyzak J M, Howson T E, et al.Recrystallization behavior of cold rolled alloy 718 [A]. Superalloys 718 and 625 and Various Derivatives[C]. Warrendale, PA: TMS, 1991: 205
[18] Liu W C, Yao M, Chen Z L, et al.Niobium segregation in Inconel 718[J]. J. Mater. Sci., 1999, 34: 2583
doi: 10.1023/A:1004648615561
[19] Liu W C, Chen Z L, Xiao F R, et al.Effect of cold rolling on the precipitation behavior of δ phase and γ'' phase in Inconel 718[J]. Acta Aeronaut. Astronaut. Sin., 1999, 20: 279
[19] (刘文昌, 陈宗霖, 肖福仁等. 冷轧变形对Inconel 718合金δ相γ''相析出行为的影响[J]. 航空学报, 1999, 20: 279)
[20] Ka?etas P J P, Osorio L A R, Mata M P G, et al. Influence of the delta phase in the microstructure of the Inconel 718 subjected to "delta-processing" heat treatment and hot deformed[J]. Proc. Mater. Sci., 2015, 8: 1160
doi: 10.1016/j.mspro.2015.04.180
[21] Liu W C, Yao M, Xiao F R, et al.Determination of δ phase fraction and precipitation behaviour of δ phase in Inconel 718 alloy[J]. Iron Steel, 1997, 32(5): 55
[21] (刘文昌, 姚枚, 肖福仁等. Inconel 718合金δ相含量的测定及δ相析出[J]. 钢铁, 1997, 32(5): 55)
[22] Footner P K, Richards B P.Long-term growth of superalloy γ'′ particles[J]. J. Mater. Sci., 1982, 17: 2141
doi: 10.1007/BF00540433
[23] Smallman R E, translated by Zhang R J. Modern Physical Metallurgy [M]. Beijing: Metallurgical Industry Press, 1980: 176
[27] Cahn J W.Coherent fluctuations and nucleation in isotropic solids[J]. Acta Metall., 1962, 10: 907
doi: 10.1016/0001-6160(62)90140-2
[28] Smith C S.Grains, phases, and interphases: an interpretation of microstructure[J]. Met. Technol., 1948, 175: 15
[1] 曾贵民,罗海文,李军,龚坚,黎先浩,王现辉. 取向硅钢低温加热工艺中渗氮工序的实验与数值模拟研究[J]. 金属学报, 2017, 53(6): 743-750.
[2] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[3] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[4] 钟玉洁,戴洪斌,王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*[J]. 金属学报, 2016, 52(4): 505-512.
[5] 张文颖, 李俊, 周波. 金属连接体涂层材料MnCo2O4尖晶石的氧化动力学行为和电性能*[J]. 金属学报, 2016, 52(3): 355-360.
[6] 杨彪,郑百林,胡兴健,贺鹏飞,岳珠峰. 空洞对镍基单晶合金纳米压痕过程的影响*[J]. 金属学报, 2016, 52(2): 129-134.
[7] 李勇,郭明星,姜宁,张许凯,张艳,庄林忠,张济山. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究*[J]. 金属学报, 2016, 52(2): 191-201.
[8] 吴书舟,易幼平,黄始全,李俊,李晨. 7050铝合金淬火敏感性研究和微观组织分析*[J]. 金属学报, 2016, 52(12): 1503-1509.
[9] 刘峰,王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨*[J]. 金属学报, 2016, 52(10): 1326-1332.
[10] 杨云,宋西平. 合金元素Cu对金属Zr吸氘动力学机制的影响*[J]. 金属学报, 2016, 52(1): 100-104.
[11] 武慧东,张弛,柳文波,杨志刚. 考虑位错相互作用的混合控制模型下先共析铁素体生长动力学模拟[J]. 金属学报, 2015, 51(9): 1136-1144.
[12] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[13] 姚曼, 崔薇, 王旭东, 徐海譞, PHILLPOT S R. W辐照损伤初期的分子动力学研究*[J]. 金属学报, 2015, 51(6): 724-732.
[14] 付勇军, 杨平, 蒋奇武, 王晓达, 金文旭. Fe-3%Si电工钢铸坯柱状晶织构的演变规律*[J]. 金属学报, 2015, 51(5): 545-552.
[15] 崔莉, 郭明星, 彭祥阳, 张艳, 张济山, 庄林忠. 预变形对汽车用Al-Mg-Si-Cu合金析出行为的影响[J]. 金属学报, 2015, 51(3): 289-297.