Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 822-829    DOI: 10.3724/SP.J.1037.2012.00109
  论文 本期目录 | 过刊浏览 |
ScMn2合金贮氢(氘)性能
李武会1), 田保红2), 马坪1), 吴尔冬1)
1) 中国科学院金属研究所, 沈阳 110016
2) 河南科技大学, 洛阳 471003
HYDROGEN STORAGE PROPERTIES OF ScMn2 ALLOY
LI Wuhui1), TIAN Baohong2), MA Ping1), WU Erdong1)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003
引用本文:

李武会 田保红 马坪 吴尔冬. ScMn2合金贮氢(氘)性能[J]. 金属学报, 2012, 48(7): 822-829.
, , , . HYDROGEN STORAGE PROPERTIES OF ScMn2 ALLOY[J]. Acta Metall Sin, 2012, 48(7): 822-829.

全文: PDF(1185 KB)  
摘要: 利用XRD研究了ScMn2合金及其氢(氘)化物的晶体结构; 利用Sieverts装置测量了合金的吸氢活化性能、P-C-T曲线及吸氢动力学曲线; 利用热重--差热分析仪(TG-DSC)研究了ScMn2H3.6钝化后的放氢动力学. 结果表明, ScMn2的氢(氘)化物保持了母合金C14型Laves相结构, 吸氢造成的晶胞体积膨胀约为25%; ScMn2在室温常压下能与H(D)迅速发生反应, 具有优异的活化性能; 100 kPa, 298 K时, 1 mol ScMn2合金的贮氢量和贮氘量分别约为3.7和3.6 mol; ScMn2具有较低的吸、放氢滞后临界温度, 优异的平台特征以及较低的平台压, 适于H及其同位素贮存. 与室温平台压对应的合金氢化物的?H?S分别为-45 kJ/mol和-80 J/(K?mol); ScMn2在113 kPa初始H2(D2)压强下吸氢(氘)动力学可用JMA模型描述, 反应级数为0.4, 吸氢和吸氘的表观活化能分别为(16±0.3)和(19±1.7) kJ/mol, 此活化能的差异使ScMn2有可能用于H同位素分离; 钝化后的合金氢化物在639 K时能完全放氢, 放氢的表观活化能为 (144±14) kJ/mol.
关键词 ScMn2合金吸氢活化P-C-T曲线热力学动力学    
Abstract:As an important rare--earth type Laves phase compound, ScMn2 alloy is endowed certain significance in the viewpoint of either theoretical or applicable investigation. In this study, the structures of ScMn2 alloy and its hydride (deuteride) are characterized by XRD. The hydrogen activation properties, pressure-concentration-temperature (P-C-T) curves and absorption kinetic curves of ScMn2 alloy are measured using Sieverts-type hydrogenator. The desorption kinetics of the passivated hydride are determined by TG-DSC. The results show that the hydride and deuteride of the alloy retain the C14 type Laves phase structure of the parent alloy, with the volume expansions of about 25%. ScMn2 possesses outstanding activation properties and can react quickly with hydrogen (deuterium) at room temperature and atmospheric pressure. The hydrogen and deuterium storage capacities of 1 mol ScMn2 are about 3.7 mol H and 3.6 mol D at 100 kPa and 298 K. ScMn2 has low hysteresis critical temperature for absorption and desorption, good plateau characteristics and relatively low plateau pressure, hence it is suitable for the storage of hydrogen isotopes. The enthalpy and entropy for formation of ScMn2 hydride at concentration corresponding to room temperature plateau pressure are -45 kJ/mol and -80 J/(K?mol), respectively. The hydriding kinetics of the alloy can be interpreted by Johnson-Mehl-Avrami (JMA) model, with the estimated reaction order of 0.4. The apparent activation energies for hydriding and deteuriding process are estimated to be  (16±0.3) and (19±1.7) kJ/mol, respectively, the observed isotope effect on kinetics can possibly be applied to separation of hydrogen isotope. The passivated hydride can release completely at 639 K and the corresponding apparent activation energy is (144±14) kJ/mol.
Key wordsScMn2 alloy    hydrogen activation    pressure-concentration-temperature curve    thermodynamics    kinetics
收稿日期: 2012-02-28     
ZTFLH: 

TG139+.7

 
基金资助:

国家自然科学基金项目51071157和11079043资助

作者简介: 李武会, 男, 1969年生, 博士生
[1] Pebler A, Gulbransen E A. Electrochem Technol, 1966; 4: 211

[2] Pourarian F, Fujii H, Wallace W E, Sinha V K, Kevin Smith H. J Phys Chem, 1981; 85: 3105

[3] Moriwaki Y, Gamo T, Iwaki T. J Less–Common Met, 1991; 172: 1028

[4] Li G, Nishimiya N, Satoh H, Kamegashira N. J Alloys Compd, 2005; 393: 231

[5] Guo X M, Wu E D. J Alloys Compd, 2008; 455: 191

[6] Li W H, Wu E D. J Alloys Compd, 2012; 511: 169

[7] Dwight A E. Trans Am Soc Met, 1961; 53: 479

[8] Park J M, Lee J Y. J Less–Common Met, 1991; 167: 245

[9] Kost M E, Raevskaya M V, Shilov A L, Yaropolova E I, Mikheeva V I. Russ J Inorg Chem, 1979; 24: 1803

[10] Griessen R, Driessen A, De Groot D G. J Less–Common Met, 1984; 103: 235

[11] Shilov A L, Kost M E, Kuznetsov N T. J Less–Common Met, 1985; 105: 221

[12] Hunter B A, Howard C J. LHPM: A Computer Program for Rietveld Analysis of X–ray and Neutron Powder Diffraction Patterns, ANSTO Report, 1998

[13] Srinivas G, Sankaranarayanan V, Ramaprabhu S. Int J Hydrogen Energy, 2007; 32: 2480

[14] Von Buch F, Lietzau J, Mordike B L, Pisch A, Schmid– Fetzer R. Mater Sci Eng, 1999; A263: 1

[15] Manchester F D, Khatamian D. Mater Sci Forum, 1988; 31: 261

[16] Liu B H, Kim D M, Lee K Y, Lee J Y. J Alloys Compd, 1996; 240: 214

[17] Wu E D, Li W H, Li J. Int J Hydrogen Energy, 2012; 37: 1509

[18] Hu Z L. Hydrogen Storage Materials. Beijing: Chemical Industry Press, 2002: 441

(胡子龙. 贮氢材料. 北京: 化学工业出版社, 2002: 441)

[19] Broom D P. Hydrogen Storage Materials. London: Springer–Verlag, 2011: 89

[20] Ohtani Y, Hashimoto S, Uchida H. J Less–Common Met, 1991; 172–174: 841

[21] Srinivas G, Sankaranarayanan V, Ramaprabhu S. J Alloys Compd, 2008; 448: 159

[22] Kissinger H E. Anal Chem, 1957; 29: 1702

[23] Hu R Z, Shi Q Z. Thermal Analysis Kinetics. Beijing: Science Press, 2001: 1

(胡荣祖, 史启祯. 热分析动力学. 北京: 科学出版社, 2001: 1)

[24] Fang Y Z, Liao M S, Hu L L. Thermochim Acta, 2006; 443: 179

[25] Hsieh Y C, Chou Y C, Lin C P, Hsieh T F, Shu C M. Aerosol Air Qual Res, 2010; 10: 212
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[6] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[7] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[9] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[10] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[11] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[12] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[13] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[14] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[15] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.