Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 135-140    DOI: 10.3724/SP.J.1037.2009.00192
  论文 本期目录 | 过刊浏览 |
316L不锈钢激光快速成形的微观组织模拟
贾文鹏1; 汤慧萍1; 贺卫卫1; 林 鑫2; 黄卫东2
1.西北有色金属研究院金属多孔材料国家重点实验室; 西安 710016
2.西北工业大学凝固技术国家重点实验室; 西安 710072
NUMERICAL MICROSTRUCTURE SIMULATION OF LASER RAPID FORMING 316L STAINLESS STEEL
JIA Wenpeng1; TONG Huiping1; HE Weiwei1; LIN Xin2; HUANG Weidong2
1.State Key Laboratory of Porous Metals Technologies; Northwest Institute for Nonferrous Metal Research; Xi’an 710016
2.State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi’an 710072
引用本文:

贾文鹏 汤慧萍 贺卫卫 林鑫 黄卫东. 316L不锈钢激光快速成形的微观组织模拟[J]. 金属学报, 2010, 46(2): 135-140.
, . NUMERICAL MICROSTRUCTURE SIMULATION OF LASER RAPID FORMING 316L STAINLESS STEEL[J]. Acta Metall Sin, 2010, 46(2): 135-140.

全文: PDF(1257 KB)  
摘要: 

针对316L不锈钢激光快速成形(LRF)薄壁试样的凝固组织形态分布,从凝固理论出发, 建立了激光快速成形柱状晶/等轴晶转变(CET)及一次枝距λ1与有限元温度场耦合数值模型, 模拟了成形高度为2.8 mm的LRF薄壁 试样凝固组织形态及分布. 结果表明: 316L不锈钢LRF组织由致密、均匀、外延生长的细长柱状晶组成, 一般不发生CET转变, 组织中λ1在6.5-17 μm范围内, 且随熔覆高度的增加而逐渐增大, 模拟结果与实验符合很好. 在此基础上, 对成形高度为40 mm薄壁件的凝固组织形态及分布进行了预测.

关键词 316L不锈钢 激光快速成形(LRF) 微观组织 模拟    
Abstract

The laser rapid forming (LRF) as an advanced solid freedom fabrication technology, has been developed rapidly in recent decade. By rapid prototyping with laser cladding, LRF realizes the direct net shaping of the components with irregular shapes and fine inner structures, and gives a short–route, low–cost and high–flexibility fabrication of aero components, aero–engine parts and biomedical implants. In the LRF, melting and solidification are happened in a dynamic non–equilibrium, high temperature gradient and rapid solidification manner, so that the microstructure of the laser rapid formed part is finer than that of ordinary cast or forge part and presents a characteristic of typical epitaxial growth. Therefore, to achieve the predict and control of the microstructure evolution is a key problem. Much efforts have been devoted to narrating the solidification and crystallization in melting pool, but little attention has been paid to stuy the microstructure of LRF part. In this paper, the evolution otemperture field and solidification of LRF part were concerned, the relationships between as–deposited microstructure and the local solidification conditions such as solidification velocity and temperaturgradient of moving melting pool were also investigeted. A coupled 2D transient finite element LRF epitaxial growth model was developed. The morphology evolution and first order dendrite arm space λ1 distribution in 2.8 mm high LRF 316L stainless steel wall were simulated. The results show that the microstructure of LRF 316L stainless steel wall is mainly columnar austenitic dendrites, and the λ1 gradually becomes larger from the bottom about 6.5 μm to the top about 17 μm which is in good agrement with te experimntal. Further more, on the basis of the validated model, morphology volution and λ1 distribution in 40 mm high LRF 316L stainless steel wall are also predicted.

Key words316L stanless steel    laseapid forming (LRF)    microstructure    numerical simulation
收稿日期: 2009-03-27     
基金资助:

国家科技支撑计划项目2007BAE07B05和国家自然科学基金项目50331010资助

作者简介: 贾文鹏, 男, 1969年生, 博士

[1] Huang W D. Laser Solid Forming. Xi’an: Northwestern Polytechnical University Press, 2007: 16
(黄卫东. 激光立体成形. 西安: 西北工业大学出版社, 2007: 16)
[2] Liu Z X, Huang W D, Yang S. Chin J Nonferrous Met, 2002; 12: 458
(刘振侠, 黄卫东, 杨 森. 中国有色金属学报, 2002; 12: 458)
[3] Zhao Y Z, Shi Y W. Mater Rev, 2003; 17: 14
(赵玉珍, 史耀武. 材料导报, 2003; 17: 14)
[4] Dress W B, Zacharia T, Radhakrishnan B. In: Zacharia T ed., International Conference on Modeling and Control of Joining Process, AWS/ORNL Orlando, Florida, 1993: 10
[5] Grujicic M, Cao G, Figliola R S. Appl Surf Sci, 2001; 43: 57
[6] Lin X, Yang H O, Chen J, Huang W D. Acta Matell Sin, 2006; 42: 368
(林 鑫, 杨海欧, 陈 静, 黄卫东. 金属学报, 2006; 42: 368)
[7] Liu J C, Li L J. Opt Laser Technol, 2005; 37: 292
[8] Toyserkani E, Khajepour A, Corbin S. Opt Lasers Eng, 2004; 41: 867
[9] Jia W P, Chen J, Lin X, Zhong C W, Huang W D. Acta Metall Sin, 2007; 43: 552
(贾文鹏, 陈 静, 林 鑫, 钟诚文, 黄卫东. 金属学报, 2007; 43: 552)
[10] Lin X, Li Y M, Wang M, Feng L P, Chen J, Huang W D. Sci China, 2003; 33: 460
(林 鑫, 李延民, 王 猛, 冯丽萍, 陈 静, 黄卫东. 中国科学, 2003; 33: 460)
[11] Porter D A, Easterling K E. Phase Transformations in Metal and Alloys. 3rd Ed., London: Chapman and Hall, 1992: 168
[12] Poole W J , Weinberg F. Metall Mater, 1998; 29A: 861
[13] Kurz W, Fisher D J. Foundamentals of Solidification. 3rd Ed., Aedermansdorf, Switzerland, Trans Tech Publications, 1992: 233

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[5] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[8] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[9] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[10] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[11] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[12] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[13] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[14] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[15] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.