Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 792-800    DOI: 10.11900/0412.1961.2018.00566
  本期目录 | 过刊浏览 |
1. 华北理工大学教育部现代冶金技术重点实验室 唐山 063210
2. 华北理工大学电气工程学院 唐山 063210
3. 东北大学轧制技术与连轧自动化国家重点实验室 沈阳 110819
Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel
Futao DONG1(),Fei XUE2,Yaqiang TIAN1,Liansheng CHEN1,Linxiu DU3,Xianghua LIU3
1. Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China
2. College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210, China
3. The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
全文: PDF(12174 KB)   HTML

采用电化学结合低应变速率拉伸实验(SSRT)的方法和OM、SEM等手段研究了退火温度对Fe-18Mn-0.6C TWIP钢充氢条件下力学性能和变形行为的影响,并探讨了各类微观组织结构对氢致脆性的作用。结果表明,TWIP钢晶粒尺寸随退火温度的升高逐渐增大,700 ℃退火板晶界处容易观察到(Fe, Mn)3C渗碳体。900 ℃退火获得的中等尺寸均匀晶粒的TWIP钢具有最高的强塑积。在电化学充氢和SSRT同时进行下,TWIP钢的强度和塑性大幅下降,随退火温度的升高,强塑积损失率(R)呈增大趋势。高温退火得到的大尺寸晶粒在变形中更容易产生形变孪晶,孪晶/孪晶交叉位置和孪晶/晶界交叉位置是氢致裂纹的主要来源。尽管相对低温退火得到大尺寸晶粒和界面处层错能(SFE)变化使TWIP钢在变形中不容易产生形变孪晶,但其局部粗大的碳化物与形变孪晶间产生的应力集中处极易形成空位,演化成裂纹源,使相对低温退火的TWIP钢本身塑性不高。低于800 ℃退火对TWIP钢提高氢脆抵抗力没有明显作用。

关键词 TWIP钢氢致脆性形变孪晶碳化物    

TWIP steel as the representative of advanced high strength steel (AHSS) has a bright future in market and application owing to its excellent strength and ductility. Hydrogen embrittlement (HE) as a difficult problem of TWIP steel, researches on solving it mainly focus on alloying, few effort has been made on the mechanism of improving HE resistance by process adjustment and microstructure optimization. In this work, electrochemically combined with slow strain rate tensile test (SSRT) and OM, SEM have been used to study the effect of annealing temperature on mechanical property and deformation behavior of a Fe-18Mn-0.6C (mass fraction, %) twinning-induced plasticity (TWIP) steel, and also the influence of various microstructures on HE were discussed. The results showed that the grain size of TWIP steel increased with the increasing annealing temperature. In 700 ℃ annealed sheet, grain boundary (Fe, Mn)3C cementite was obvious. TWIP steel with uniform medium-sized grains by 900 ℃ annealing had the highest strength-ductility balance. After SSRT under ongoing hydrogen charging, strength and plasticity reduced significantly. The strength-ductility balance loss rate (R) showed a tendency of increasing with the increasing annealing temperature. Deformation twins were more likely to be produced in large-sized grains by high temperature annealing. The junctions of twin/twin and twin/grain boundary were the main sources of hydrogen induced cracks. Although relatively low temperature annealing resulted in fine grains and the change of stacking fault energy (SFE) along grain boundary, deformation twins were not easily formed. But it was very vulnerable to generate vacancies where the stress concentrated between the local coarse carbides and deformation twins, then evolved into crack sources. As a result, the plasticity of TWIP steel itself was not high when annealed at a relatively low temperature. It had no apparent effect on improving HE resistance for TWIP steel annealed below 800 ℃.

Key wordsTWIP steel    hydrogen embrittlement    deformation twin    carbide
收稿日期: 2018-12-26      出版日期: 2019-04-08
ZTFLH:  TG142  
通讯作者: 董福涛     E-mail:
Corresponding author: Futao DONG     E-mail:
作者简介: 董福涛,男,1985年生,副教授,博士


董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel. Acta Metall Sin, 2019, 55(6): 792-800.

链接本文:      或

图1  Fe-18Mn-0.6C TWIP钢不同温度退火板的OM像
图2  Fe-18Mn-0.6C TWIP钢不同温度退火板的奥氏体晶粒尺寸分布
图3  Fe-18Mn-0.6C TWIP钢退火板未充氢条件下拉伸得到的工程应力-应变曲线
图4  Fe-18Mn-0.6C TWIP钢退火板未充氢条件下拉伸得到的应变硬化速率和加工硬化指数随真应变的变化关系曲线
图5  Fe-18Mn-0.6C TWIP钢退火板电化学充氢条件下进行低应变速率拉伸实验得到的工程应力-应变曲线
图6  Fe-18Mn-0.6C TWIP钢退火板未充氢和电化学充氢条件下进行低应变速率拉伸实验得到的强塑积及氢影响下的强塑积损失率
图7  Fe-18Mn-0.6C TWIP钢退火板局部放大的工程应力-应变曲线
图8  Fe-18Mn-0.6C TWIP钢不同温度退火板不同应变程度的SEM像
图9  Fe-18Mn-0.6C TWIP钢不同温度退火板中碳化物形貌的SEM像及EDS分析
[1] Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels [J]. Mater. Sci. Eng., 2011, A528: 2922
[2] Hong S, Shin S Y, Kim H S, et al. Effects of inclusions on delayed fracture properties of three twinning induced plasticity (TWIP) steels [J]. Metall. Mater. Trans., 2013, 44A: 776
[3] van Tol R T, Zhao L, Bracke L, et al. Investigation of the delayed fracture phenomenon in deep-drawn austenitic manganese-based twinning-induced plasticity steels [J]. Metall. Mater. Trans., 2013, 44A: 4654
[4] Koyama M, Akiyama E, Tsuzaki K. Hydrogen embrittlement in a Fe-Mn-C ternary twinning-induced plasticity steel [J]. Corros. Sci., 2012, 54: 1
[5] Koyama M, Akiyama E, Lee Y K, et al. Overview of hydrogen embrittlement in high-Mn steels [J]. Int. J. Hydrogen Energy, 2017, 42: 12706
[6] Ronevich J A, Kim S K, Speer J G, et al. Hydrogen effects on cathodically charged twinning-induced plasticity steel [J]. Scr. Mater., 2012, 66: 956
[7] Chun Y S, Park K T, Lee C S. Delayed static failure of twinning-induced plasticity steels [J]. Scr. Mater., 2012, 66: 960
[8] Koyama M, Akiyama E, Tsuzaki K. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging [J]. Acta Mater., 2013, 61: 4607
[9] Wang M Q, Akiyama E, Tsuzaki K. Hydrogen degradation of a boron-bearing steel with 1050 and 1300 MPa strength levels [J]. Scr. Mater., 2005, 52: 403
[10] Toribio J, Kharin V, Lorenzo M, et al. Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels [J]. Corros. Sci., 2011, 53: 3346
[11] Enos D G, Scully J R. A critical-strain criterion for hydrogen embrittlement of cold-drawn, ultrafine pearlitic steel [J]. Metall. Mater. Trans., 2002, 33A: 1151
[12] Wang M Q, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test [J]. Corros. Sci., 2007, 49: 4081
[13] Barnoush A, Vehoff H. Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation [J]. Acta Mater., 2010, 58: 5274
[14] Takagi S, Toji Y, Yoshino M, et al. Hydrogen embrittlement resistance evaluation of ultra high strength steel sheets for automobiles [J]. ISIJ Int., 2012, 52: 316
[15] Song E J, Bhadeshia H K D H, Suh D W. Interaction of aluminium with hydrogen in twinning-induced plasticity steel [J]. Scr. Mater., 2014, 87: 9
[16] Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe-Mn-C TWIP steels [J]. Corros. Sci., 2014, 82: 218
[17] Malard B, Remy B, Scott C, et al. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe-Mn-C steel studied by small-angle neutron scattering [J]. Mater. Sci. Eng., 2012, A536: 110
[18] Zhao Y Y, Wang J F, Zhou S, et al. Effects of rare earth addition on microstructure and mechanical properties of a Fe-15Mn-1.5Al-0.6C TWIP steel [J]. Mater. Sci. Eng., 2014, A608: 106
[19] Dini G, Najafizadeh A, Ueji R, et al. Tensile deformation behavior of high manganese austenitic steel: The role of grain size [J]. Mater. Des., 2010, 31: 3395
[20] Chen L, Kim H S, Kim S K, et al. Localized deformation due to Portevin-LeChatelier effect in 18Mn-0.6C TWIP austenitic steel [J]. ISIJ Int., 2007, 47: 1804
[21] Guo P C, Qian L H, Meng J Y, et al. Monotonic tension and tension-compres-sion cyclic deformation behaviors of high manganese austenitic TWIP steel [J]. Acta Metall. Sin., 2014, 50: 415
[21] (郭鹏程, 钱立和, 孟江英等. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为 [J]. 金属学报, 2014, 50: 415)
[22] El-Danaf E, Kalidindi S R, Doherty R D. Influence of deformation path on the strain hardening behavior and microstructure evolution in low SFE FCC metals [J]. Int. J. Plast., 2001, 17: 1245
[23] Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure [J]. Scr. Mater., 2008, 59: 963
[24] Park I J, Lee S M, Jeon H H, et al. The advantage of grain refinement in the hydrogen embrittlement of Fe-18Mn-0.6C twinning-induced plasticity steel [J]. Corros. Sci., 2015, 93: 63
[25] Oudriss A, Creus J, Bouhattate J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel [J]. Acta Mater., 2012, 60: 6814
[26] Oudriss A, Creus J, Bouhattate J, et al. The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel [J]. Scr. Mater., 2012, 66: 37
[27] Du Y A, Ismer L, Rogal J, et al. First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe [J]. Phys. Rev., 2011, 84B: 144121
[28] Hutchinson B, Ridley N. On dislocation accumulation and work hardening in Hadfield steel [J]. Scr. Mater., 2006, 55: 299
[29] Idrissi H, Renard K, Ryelandt L, et al. On the mechanism of twin formation in Fe-Mn-C TWIP steels [J]. Acta Mater., 2010, 58: 2464
[30] Hermida J D, Roviglione A. Stacking fault energy decrease in austenitic stainless steels induced by hydrogen pairs formation [J]. Scr. Mater., 1998, 39: 1145
[31] Steinmetz D R, Japel T, Wietbrock B, et al. Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments [J]. Acta Mater., 2013, 61: 494
[32] Saeed-Akbari A, Mosecker L, Schwedt A, et al. Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part I. Mechanism maps and work-hardening behavior [J]. Metall. Mater. Trans., 2012, 43A: 1688
[33] Idrissi H, Renard K, Schryvers D, et al. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels [J]. Scr Mater., 2010, 63: 961
[34] Sevillano J G. Geometrically necessary twins and their associated size effects [J]. Scr. Mater., 2008, 59: 135
[35] Hong S, Lee J, Lee B J, et al. Effects of intergranular carbide precipitation on delayed fracture behavior in three twinning induced plasticity (TWIP) steels [J]. Mater. Sci. Eng., 2013, A587: 85
[36] Herbig M, Kuzmina M, Haase C, et al. Grain boundary segregation in Fe-Mn-C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography [J]. Acta Mater., 2015, 83: 37
[37] Hickel T, Sandl?bes S, Marceau R K W, et al. Impact of nanodiffusion on the stacking fault energy in high-strength steels [J]. Acta Mater., 2014, 75: 147
[38] Mahajan S, Chin G Y. Formation of deformation twins in f.c.c. crystals [J]. Acta Metall., 1973, 21: 1353
[39] Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels [J]. Scr. Mater., 2013, 68: 343
[1] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[2] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[3] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
[4] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[5] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[6] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[7] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[8] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[9] 马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.
[10] 马颖澈,李硕,郝宪朝,查向东,高明,刘奎. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究*[J]. 金属学报, 2016, 52(8): 980-986.
[11] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[12] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[13] 单智伟, 刘博宇. Mg的{101̅2}形变孪晶机制*[J]. 金属学报, 2016, 52(10): 1267-1278.
[14] 丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.
[15] 张义文,胡本芙. 镍基粉末高温合金中微量元素Hf的作用*[J]. 金属学报, 2015, 51(8): 967-975.