Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1442-1450    DOI: 10.11900/0412.1961.2018.00134
  本期目录 | 过刊浏览 |
林英华1,2, 袁莹1,2, 王梁1,2, 胡勇1,2, 张群莉1,2, 姚建华1,2()
1 浙江工业大学激光先进制造研究院 杭州 310014
2 浙江省高端激光制造装备协同创新中心 杭州 310014
Effect of Electric-Magnetic Compound Field on the Microstructure and Crack in Solidified Ni60 Alloy
Yinghua LIN1,2, Ying YUAN1,2, Liang WANG1,2, Yong HU1,2, Qunli ZHANG1,2, Jianhua YAO1,2()
1 Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, China
2 Zhejiang Provincial Collaborative Innovation Center of High-End Laser Manufacturing Equipment, Hangzhou 310014, China
全文: PDF(5527 KB)   HTML

利用电磁复合场协同激光熔覆制备多道Ni60合金熔覆层,运用着色探伤剂、OM、SEM、EDS、XRD与硬度测试等实验手段,对制备的Ni60合金熔覆层进行测试分析。结果表明,施加电磁复合场之前,制备的Ni60合金熔覆层表面出现明显开裂,内部存在大尺寸气孔,表面成形质量差;施加电磁复合场之后,Ni60合金熔覆层表面裂纹得到了抑制,内部气孔消失,且熔覆层表面成形质量也得到了改善。同时,施加电磁复合场后,制备的Ni60合金熔覆层的脆性相(CrB和(Cr, Fe)23C6 )颗粒尺寸从4~6 μm降低至2~4 μm,且颗粒偏聚得到降低,并有效地消除了内部裂纹。施加电磁复合场之后,熔覆层内部的脆性相含量、颗粒偏聚、晶格畸变和硬度均减少,降低了裂纹萌生的几率,从而有效地抑制了内部裂纹的形成。

关键词 Ni60合金激光熔覆电磁复合场裂纹    

Ni60 alloy has been widely used in many application fields due to its excellent wear resistance, corrosion resistance and high temperature oxidation resistance. However, uneven microstructure was easily formed due to the effect of heat shock and heat accumulation during laser multi-track overlap process. Moreover, Ni60 alloy powder was composed of a variety of elements. The composition segregation and high content CrB, (Cr, Fe)23C6 were easily present in the coating during the laser cladding process, which can easily lead to the cracking of Ni60 alloy coating. In this work, multi-layer Ni60 alloy coating was prepared by electric-magnetic compound field assisted laser cladding. Synthesis of Ni60 alloy coating was analyzed by coloring agent, OM, SEM, EDS, XRD and microhardness tester. The results showed that cracks and large pores were to appear at the coating when the electric-magnetic compound field was not applied, and the molding quality was also poor. When the electric-magnetic compound field was applied, the surface cracks of Ni60 alloy coating were suppressed, the pores were eliminated, and the molding quality of the coating was also improved. Meanwhile, the particle size of the brittle phase (CrB, (Cr, Fe)23C6) was decreased from 4~6 μm to 2~4 μm by the aid of the electric-magnetic compound field, and the degree of particle cluster was also reduced, which was beneficial to the elimination of the internal crack. XRD, microstructure and microhardness analysis results showed that the brittle phase content, particle segregation, lattice distortion and hardness were reduced under the condition of electric-magnetic compound field, leading to the decrease of crack initiation probability, so the crack of Ni60 alloy coating was remarkably reduced.

Key wordsNi60 alloy    laser cladding    electric-magnetic compound field    crack
收稿日期: 2018-04-11      出版日期: 2018-07-02
ZTFLH:  TN249  

作者简介 林英华,男,1985年生,博士


林英华, 袁莹, 王梁, 胡勇, 张群莉, 姚建华. 电磁复合场对Ni60合金凝固过程中显微组织和裂纹的影响[J]. 金属学报, 2018, 54(10): 1442-1450.
Yinghua LIN, Ying YUAN, Liang WANG, Yong HU, Qunli ZHANG, Jianhua YAO. Effect of Electric-Magnetic Compound Field on the Microstructure and Crack in Solidified Ni60 Alloy. Acta Metall, 2018, 54(10): 1442-1450.

链接本文:      或

图1  电磁复合场(EMCF)辅助激光熔覆过程示意图
图2  施加EMCF前后Ni60合金熔覆层的表面着色探伤图
图3  施加EMCF前后Ni60合金熔覆层纵截面OM像
图4  施加EMCF前后不同道次熔覆层厚度
图5  施加EMCF前后Ni60合金熔覆层表层和底部的XRD谱
图6  未施加EMCF的Ni60合金第1和第5道次熔覆层横截面的SEM像
图7  未施加EMCF的Ni60合金第2道次熔覆层内部裂纹和周围显微组织的SEM像
Position C Si Cr Fe Ni Mo
1 41.06 1.28 50.24 5.40 1.78 0.24
2 39.93 0.56 11.27 29.35 18.30 0.59
3 39.28 1.30 47.36 8.16 3.63 0.27
4 39.21 0.45 13.63 28.51 17.73 0.47
5 37.63 0.56 48.07 9.10 4.42 0.22
6 36.53 0.39 20.41 27.30 15.16 0.21
7 37.92 0.54 45.13 10.34 5.82 0.25
8 35.83 0.67 17.28 25.76 20.23 0.23
表1  图6和图8中不同位置的EDS分析结果
图8  施加EMCF后Ni60合金第1和第5道次熔覆层横截面的SEM像
图9  施加EMCF前后Ni60合金第1道次熔覆层横截面显微硬度
图10  施加EMCF前物相偏聚示意图
[1] Yao J H, Yang L J, Li B, et al.Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray[J]. Appl. Surf. Sci., 2015, 330: 300
doi: 10.1016/j.apsusc.2015.01.029
[2] Wen Z H, Bai Y, Yang J F, et al.Effect of vacuum re-melting on the solid particles erosion behavior of Ni60-NiCrMoY composite coatings prepared by plasma spraying[J]. Vacuum, 2016, 134: 73
doi: 10.1016/j.vacuum.2016.09.020
[3] Xu B S, Fang J X, Dong S Y, et al.Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding FV520B stainless steel[J]. Acta Metall. Sin., 2015, 52: 1(徐滨士, 方金祥, 董世运等. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响[J]. 金属学报, 2015, 52: 1)
[4] Ocelík V, Furár I, De Hosson J T M. Microstructure and properties of laser clad coatings studied by orientation imaging microscopy[J]. Acta Mater., 2010, 58: 6763
doi: 10.1016/j.actamat.2010.09.002
[5] Yao J H, Yang L J, Li B, et al.Characteristics and performance of hard Ni60 alloy coating produced with supersonic laser deposition technique[J]. Mater. Des., 2015, 83: 26
doi: 10.1016/j.matdes.2015.05.087
[6] Lu X L, Liu X B, Yu P C, et al.Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding[J]. Opt. Laser Technol., 2016, 78: 87
doi: 10.1016/j.optlastec.2015.10.005
[7] Ma Q S, Li Y J, Wang J, et al.Microstructure evolution and growth control of ceramic particles in wide-band laser clad Ni60/WC composite coatings[J]. Mater. Des., 2016, 92: 897
doi: 10.1016/j.matdes.2015.12.121
[8] Zhang J, Hu Y, Tan X J, et al.Microstructure and high temperature tribological behavior of laser cladding Ni60A alloys coatings on 45 steel substrate[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1525
doi: 10.1016/S1003-6326(15)63754-2
[9] Shu D, Li Z G, Zhang K, et al.In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding[J]. Mater Lett., 2017, 195: 178
doi: 10.1016/j.matlet.2017.02.076
[10] Wang L, Yao J H, Hu Y, et al.Influence of electric-magnetic compound field on the WC particles distribution in laser melt injection[J]. Surf. Coat. Technol., 2017, 315: 32
doi: 10.1016/j.surfcoat.2017.01.116
[11] Wang L, Yao J H, Hu Y, et al.Suppression effect of a steady magnetic field on molten pool during laser remelting[J]. Appl. Surf. Sci., 2015, 351: 794
doi: 10.1016/j.apsusc.2015.05.179
[12] Bachmann M, Avilov V, Gumenyuk A, et al.About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. Int. J. Heat. Mass. Transfer, 2013, 60: 309
doi: 10.1016/j.ijheatmasstransfer.2013.01.015
[13] Rong Y M, Xu J J, Cao H Y, et al.Influence of steady magnetic field on dynamic behavior mechanism in full penetration laser beam welding[J]. J. Manuf. Process., 2017, 26: 399
doi: 10.1016/j.jmapro.2017.03.007
[14] Chen J C, Wei Y H, Zhan X H, et al.Melt flow and thermal transfer during magnetically supported laser beam welding of thick aluminum alloy plates[J]. J. Mater. Process. Technol., 2018, 254: 325
doi: 10.1016/j.jmatprotec.2017.11.046
[15] Wang L, Wu C S, Chen J, et al.Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding[J]. Int. J. Heat Mass Transfer, 2018, 116: 1282
doi: 10.1016/j.ijheatmasstransfer.2017.09.130
[16] Wen Z H, Bai Y, Yang J F, et al.Corrosion resistance of vacuum re-melted Ni60-NiCrMoY alloy coatings[J]. J. Alloys Compd., 2017, 711: 659
doi: 10.1016/j.jallcom.2017.03.318
[17] Luo F, Cockburn A, Sparkes M, et al.Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition[J]. Defence Technol., 2015, 11: 35
doi: 10.1016/j.dt.2014.09.003
[18] Chen G, Gao Z Y.Effect of welding processing parameters on porosity formation of mild steel treated by CO2 laser deep penetration welding[J]. Acta Metall. Sin., 2013, 49: 181(陈高, 高子英. 焊接工艺参数对低碳钢CO2激光深熔焊接气孔形成的影响[J]. 金属学报, 2013, 49: 181)
[19] Wei H L, Elmer J W, DebRoy T. Crystal growth during keyhole mode laser welding[J]. Acta Mater., 2017, 133: 10
doi: 10.1016/j.actamat.2017.04.074
[20] Chen M H, Xu J N, Xin L J, et al.Effect of keyhole characteristics on porosity formation during pulsed laser-GTA hybrid welding of AZ31B magnesium alloy[J]. Opt. Laser Eng., 2017, 93: 139
doi: 10.1016/j.optlaseng.2017.01.018
[21] Ma Q S, Li Y J, Wang J, et al.Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding[J]. J. Alloys Compd., 2015, 645: 151
doi: 10.1016/j.jallcom.2015.04.136
[22] Cai Y C, Luo Z, Feng M N, et al.The effect of TiC/Al2O3 composite ceramic reinforcement on tribological behavior of laser cladding Ni60 alloys coatings[J]. Surf. Coat. Technol., 2016, 291: 222
doi: 10.1016/j.surfcoat.2016.02.033
[23] Wen P, Shinozaki K, Yamamoto M.Experimental research and numerical simulation of solidification crack during laser welding of ring structure[J]. Acta Metall. Sin., 2011, 47: 1241(温鹏, 荻崎贤二, 山本元道. 环形结构激光焊接凝固热裂纹的实验研究和数值模拟[J]. 金属学报, 2011, 47: 1241)
[24] Na S, Yoon D, Kim J, et al.An evaluation of the fatigue crack propagation rate for powder metallurgical nickel-based superalloys using the DCPD method at elevated temperatures[J]. Int. J. Fatigue., 2017, 101: 27
doi: 10.1016/j.ijfatigue.2017.04.003
[25] Yan F, Liu S, Hu C J, et al.Liquation cracking behavior and control in the heat affected zone of GH909 alloy during Nd: YAG laser welding[J]. J. Mater. Process. Technol., 2017, 244: 44
doi: 10.1016/j.jmatprotec.2017.01.018
[26] Ye X, Hua X M, Wang M, et al.Controlling hot cracking in Ni-based Inconel-718 superalloy cast sheets during tungsten inert gas welding[J]. J. Mater. Process. Technol., 2015, 222: 381
doi: 10.1016/j.jmatprotec.2015.03.031
[1] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[2] 邵盈恺, 王玉玺, 杨志斌, 史春元. 基于焊缝熔深优化的7075铝合金等离子-MIG复合焊接热裂纹敏感性[J]. 金属学报, 2018, 54(4): 547-556.
[3] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[4] 王瑾, 余黎明, 黄远, 李会军, 刘永长. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响[J]. 金属学报, 2018, 54(1): 47-54.
[5] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[6] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[7] 王晋, 张跃飞, 马晋遥, 李吉学, 张泽. Inconel 740H合金原位高温拉伸微裂纹萌生扩展研究[J]. 金属学报, 2017, 53(12): 1627-1635.
[8] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[9] 王菲,王恩刚,贾鹏,王韬,邓安元. 电磁连铸对Incoloy800H合金铸坯内TiN分布和内裂纹的影响[J]. 金属学报, 2017, 53(1): 97-106.
[10] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[11] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[12] 刘彬,贡凯,乔岩欣,董世运. 基于金属磁记忆评价裂纹埋深对激光熔覆层应力的影响*[J]. 金属学报, 2016, 52(2): 241-248.
[13] 佴启亮,董建新,张麦仓,姚志浩. 多组织因素对GH4738合金裂纹扩展速率的交互影响*[J]. 金属学报, 2016, 52(2): 151-160.
[14] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[15] 莫文林, 张旭, 陆善平, 李殿中, 李依依. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响*[J]. 金属学报, 2015, 51(2): 230-238.