Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 581-590    DOI: 10.11900/0412.1961.2017.00376
  本期目录 | 过刊浏览 |
一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究
蒋成洋1,2, 阳颖飞2, 张正义3, 鲍泽斌2(), 朱圣龙2, 王福会1
1 东北大学材料科学与工程学院 沈阳 110819
2 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
3 中国航发南方工业有限公司 株洲 412002
Preparation and Enhanced Hot Corrosion Resistance of aZr-Doped PtAl2+(Ni, Pt)Al Dual-Phase Coating
Chengyang JIANG1,2, Yingfei YANG2, Zhengyi ZHANG3, Zebin BAO2(), Shenglong ZHU2, Fuhui WANG1
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 China National South Aviation Industry Co., Ltd., Zhuzhou 412002, China
全文: PDF(7127 KB)   HTML
摘要: 

在镍基单晶高温合金上采用复合电镀的方法沉积Pt-Zr复合镀层,随后通过气相渗铝的方法,获得Zr改性的PtAl2+(Ni, Pt)Al双相涂层,该涂层分为3层:外层由PtAl2颗粒弥散分布在β-(Ni, Pt)Al中的双相区组成,中间层为β-(Ni, Pt)Al及少量Cr的析出物,内层为互扩散区(IDZ)。其中,Zr元素主要固溶在外层双相区以及中间层β-(Ni, Pt)Al中。分别对Zr改性和普通PtAl2+(Ni, Pt)Al双相涂层在850 ℃下Na2SO4/NaCl (75:25,质量比)混合盐中进行热腐蚀实验,结果表明,因Zr元素具有固定S和Cl的作用,可降低S和Cl在热腐蚀过程中的破坏性,故Zr改性PtAl2+(Ni, Pt)Al双相涂层比普通PtAl2+(Ni, Pt)Al双相涂层具有更好的抗热腐蚀性能。经过低真空预氧化处理后,普通PtAl2+(Ni, Pt)Al双相涂层表面生成的Al2O3膜较薄,在后续热腐蚀过程中并不能有效抵挡混合盐的持续入侵,涂层长期抗热腐蚀性能与原始状态PtAl2+(Ni, Pt)Al涂层样品接近。

关键词 Zr改性活性元素Pt-Al涂层热腐蚀    
Abstract

Prior to practical service, hot-section components (e.g. airfoils and vanes) of a gas turbine engine are necessarily coated by a protective metallic coating (such as aluminide diffusion coating, modified aluminide coating and MCrAlY overlay etc.) to resist high temperature oxidation and hot corrosion. Among the modified aluminide coatings, the coating with Pt-modification has attracted great attention and is widely used in applications requiring high reliability and extended service life since it possesses superior oxidation/corrosion resistance at high temperature. The presence of Pt in aluminide coating is favorable for increasing bonding strength of oxide scale, enlarging phase region of β-NiAl and confining detrimental effect of sulphur etc. Although Pt-modification has exhibited visible benefits for acquiring better high-temperature performance, it is far from satisfaction to develop an ideal aluminide diffusion coating. Reactive elements such as Y, Hf, Zr or their oxides have been employed to modify the nickel aluminide coating system, with an aim to further improve scale adhesion and promote exclusive formation of α-Al2O3 simultaneously. In this work, a Zr-doped PtAl2+(Ni, Pt)Al dual-phase aluminide coating was prepared on a Ni-based single crystal superalloy by co-deposition of Pt-Zr through electroplating and subsequent aluminization treatments. The coating was mainly composed of three layers: the outmost layer consisted of double phases with PtAl2 particles dispersed in β-(Ni, Pt)Al domain, while the interlayer comprised β-(Ni, Pt)Al with small amount of Cr-precipitates, and the bottom layer was an inter-diffusion zone (IDZ). Zirconium was mainly distributed inside β-(Ni, Pt)Al solid solution in both the outmost layer and the interlayer. Compared with normal PtAl2+(Ni, Pt)Al dual-phase coating, the hot corrosion behavior of the Zr-doped PtAl2+(Ni, Pt)Al coating was assessed in a salt mixture of Na2SO4/NaCl (75:25, mass ratio) at 850 ℃ in static air. The results indicated that the Zr-doped PtAl2+(Ni, Pt)Al dual-phase coating exhibited superior hot corrosion resistance since Zr was confirmed able to capture and fix S and Cl to diminish their detrimental effects. Meanwhile, a pre-oxidation treatment did not effectively improve the overall hot corrosion resistance of normal PtAl2+(Ni, Pt)Al coating because the thin alumina scale formed during pre-oxidation was unable to prohibit the sustained inward-invasion of the mixed salt.

Key wordsZr-doping    reactive element    Pt-Al coating    hot corrosion
收稿日期: 2017-09-08      出版日期: 2018-01-29
ZTFLH:  TG174.44  
基金资助:国家自然科学基金项目Nos.51671202、51301184,国防基础科研项目No.JCKY2016404C001和辽宁省百千万人才工程项目
作者简介:

作者简介 蒋成洋,男,1991年生,博士生

引用本文:

蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
Chengyang JIANG, Yingfei YANG, Zhengyi ZHANG, Zebin BAO, Shenglong ZHU, Fuhui WANG. Preparation and Enhanced Hot Corrosion Resistance of aZr-Doped PtAl2+(Ni, Pt)Al Dual-Phase Coating. Acta Metall, 2018, 54(4): 581-590.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2017.00376      或      http://www.ams.org.cn/CN/Y2018/V54/I4/581

图1  N5单晶高温合金上Pt-Zr复合电镀后的表面和截面形貌的SEM像
图2  普通和Zr改性PtAl2+(Ni, Pt)Al双相涂层截面形貌的SEM像
图3  普通和Zr改性PtAl2+(Ni, Pt)Al双相涂层的XRD谱
图4  N5基体、经预氧化处理的PtAl2+(Ni, Pt)Al涂层、普通PtAl2+(Ni, Pt)Al双相涂层和Zr改性PtAl2+(Ni, Pt)Al双相涂层850 ℃下在Na2SO4/NaCl (75:25,质量比)混合盐中热腐蚀质量变化曲线
图5  普通和Zr改性PtAl2+(Ni, Pt)Al双相涂层850 ℃下热腐蚀60 h后的XRD谱
图6  普通和Zr改性PtAl2+(Ni, Pt)Al双相涂层850 ℃下热腐蚀60 h截面形貌的SEM像
图7  普通和Zr改性PtAl2+(Ni, Pt)Al双相涂层850 ℃下热腐蚀100 h后的XRD谱
图8  普通和Zr改性PtAl2+(Ni, Pt)Al双相涂层850 ℃下热腐蚀100 h后截面形貌的SEM像
图9  普通PtAl2+(Ni, Pt)Al双相涂层850 ℃下热腐蚀100 h后截面的EPMA面扫描结果
图10  Zr改性PtAl2+(Ni, Pt)Al双相涂层850 ℃下热腐蚀100 h后截面的EPMA面扫描结果
图11  普通PtAl2+(Ni, Pt)Al双相涂层预氧化4 h后截面形貌的SEM像
图12  普通PtAl2+(Ni, Pt)Al双相涂层预氧化后和继续热腐蚀100 h后的XRD谱
图13  预氧化后的普通PtAl2+(Ni, Pt)Al双相涂层样品850 ℃下在混合盐中热腐蚀100 h后截面形貌的SEM像
[1] Rapp R A.Hot corrosion of materials: A fluxing mechanism?[J]. Corros. Sci., 2002, 44: 209
doi: 10.1016/S0010-938X(01)00057-9
[2] Padture N P, Gell M, Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
doi: 10.1126/science.1068609 pmid: 11951028
[3] Zeng C L, Wu W T, Guo J T.High temperature hot corrosion of NiAl-20%Fe with its surface aluminide coating[J]. Acta Metall. Sin., 1996, 32: 197(曾潮流, 吴维㞵, 郭建亭. 渗铝NiAl-20%Fe金属间合金的高温热腐蚀[J]. 金属学报, 1996, 32: 197)
[4] Rhys-Jones T N. Coatings for blade and vane applications in gas turbines[J]. Corros. Sci., 1989, 29: 623
doi: 10.1016/0010-938X(89)90104-2
[5] Guan H R, Lou H Y, Mao X Y, et al.Deterioration of aluminide coating on nickel-base superalloys[J]. Acta Metall. Sin., 1981, 17: 412(管恒荣, 楼翰一, 毛晓禹等. 两种高温合金渗Al防护层的退化过程[J]. 金属学报, 1981, 17: 412)
[6] Felten E J, Pettit F S.Development, growth, and adhesion of Al2O3 on platinum-aluminum alloys[J]. Oxid. Met., 1976, 10: 189
doi: 10.1007/BF00612159
[7] Kohlscheen J, Stock H R.Deposition of silicon enriched nickel aluminide coatings on internally cooled airfoils[J]. Met. Finish., 2009, 107: 22
doi: 10.1016/j.surfcoat.2008.07.024
[8] Li M J, Sun X F, Guan H R, et al.High temperature hot-corrosion behavior of (Ni, Pd)Al coating[J]. Acta Metall. Sin., 2004, 40: 773(李猛进, 孙晓峰, 管恒荣等. (Ni, Pd)Al涂层的高温热腐蚀[J]. 金属学报, 2004, 40: 773)
[9] Li M J, Sun X F, Guan H R, et al.High temperature oxidation behavior of Pd-Ni-Al coating[J]. Acta Metall. Sin., 2003, 39: 755(李猛进, 孙晓峰, 管恒荣等. Pd-Ni-Al涂层的高温长期氧化行为[J]. 金属学报, 2003, 39: 755)
[10] Boone D H, Deb P, Purvis L I, et al.Surface morphology of platinum modified aluminide coatings[J]. J. Vac. Sci. Technol., 1985, 3A: 2557
doi: 10.1116/1.572833
[11] Deb P, Boone D H, Streiff R.Platinum aluminide coating structural effects on hot corrosion resistance at 900 ℃[J]. J. Vac. Sci. Technol., 1985, 3A: 2578
doi: 10.1116/1.572837
[12] Deb P, Boone D H, Manley II T F. Surface instability of platinum modified aluminide coatings during 1100 ℃ cyclic testing[J]. J. Vac. Sci. Technol., 1987, 5A: 3366
doi: 10.1116/1.574197
[13] Stringer J. The reactive element effect in high-temperature corrosion [J]. Mater. Sci. Eng., 1989, A120-121: 129
doi: 10.1016/0921-5093(89)90730-2
[14] Wei F I, Stott F H.The development of Cr2O3 scales on iron-chromium alloys containing reactive elements[J]. Corro. Sci., 1989, 29: 839
doi: 10.1016/0010-938X(89)90057-7
[15] Thanneeru R, Patil S, Deshpande S, et al.Effect of trivalent rare earth dopants in nanocrystalline ceria coatings for high-temperature oxidation resistance[J]. Acta Mater., 2007, 55: 3457
doi: 10.1016/j.actamat.2007.01.043
[16] Sánchez L, Bolívar F J, Hierro M P, et al.Effect of Ce and La additions in low temperature aluminization process by CVD-FBR on 12%Cr ferritic/martensitic steel and behaviour in steam oxidation[J]. Corros. Sci., 2008, 50: 2318
doi: 10.1016/j.corsci.2008.05.008
[17] Hong S J, Hwang G H, Han W K, et al.Effect of zirconium addition on cyclic oxidation behavior of platinum-modified aluminide coating on nickel-based superalloy[J]. Intermetallics, 2010, 18: 864
doi: 10.1016/j.intermet.2009.12.012
[18] Liu Q, Yang Y F, Bao Z B, et al.Oxidation property and failure mechanism of a single phase PtAl2 coating[J]. Acta Metall. Sin., 2014, 50: 1102(柳泉, 阳颖飞, 鲍泽斌等. PtAl2单相涂层的高温抗氧化性能及失效机制研究[J]. 金属学报, 2014, 50: 1102)
doi: 10.11900/0412.1961.2014.00064
[19] Moretto P, Bressers J, Arrell D J.Evolution of a PtAl2 coating on the nickel-base alloy CMSX-6 subjected to thermo-mechanical fatigue[J]. Mater. Sci. Eng., 1999, A272: 310
doi: 10.1016/S0921-5093(99)00506-7
[20] Smeggil J G.Some comments on the role of yttrium in protective oxide scale adherence[J]. Mater. Sci. Eng., 1987, 87: 261
doi: 10.1016/0025-5416(87)90387-9
[21] Smialek J L.Adherent Al2O3 scales formed on undoped nicrai alloys[J]. Metall. Mater. Trans., 1987, 18A: 164
doi: 10.1007/BF02646237
[22] Smialek J L, Jayne D T, Schaeffer J C, et al.Effects of hydrogen annealing, sulfur segregation and diffusion on the cyclic oxidation resistance of superalloys: A review[J]. Thin Solid Films, 1994, 253: 285
doi: 10.1016/0040-6090(94)90335-2
[23] Lee W Y, Wright I G, Pint B A, et al.Effects of sulfur impurity on the scale adhesion behavior of a desulfurized Ni-based superalloy aluminized by chemical vapor deposition[J]. Metall. Mater. Trans., 1998, 29A: 833
doi: 10.1007/s11661-998-0274-z
[24] Eliaz N, Shemesh G, Latanision R M.Hot corrosion in gas turbine components[J]. Eng. Fail. Anal., 2002, 9: 31
doi: 10.1016/S1350-6307(00)00035-2
[25] Barin I, translated by Cheng N L, Niu S T, Xu G Y, et al. Thermochemical Data of Pure Substances [M]. Beijing: Science Press, 2010: 563(Barin I 著, 程乃良, 牛四通, 徐桂英 等译. 纯物质热化学数据手册 [M]. 北京: 科学出版社, 2010: 563)
[26] Bao Z B, Wang Q M, Li W Z, et al.Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy[J]. Corros. Sci., 2009, 51: 860
doi: 10.1016/j.corsci.2009.01.003
[27] Shinata Y.Accelerated oxidation rate of chromium induced by sodium chloride[J]. Oxid. Met., 1987, 27: 315
doi: 10.1007/BF00659274
[28] Shinata Y. Nishi Y.NaCl-induced accelerated oxidation of chromium[J]. Oxid. Met., 1986, 26: 201
doi: 10.1007/BF00659184
[29] Deodeshmukh V, Gleeson B.Effects of platinum on the hot corrosion behavior of Hf-modified γ′-Ni3Al +γ-Ni-based alloys[J]. Oxid. Met., 2011, 76: 43
doi: 10.1007/s11085-011-9251-9
[1] 彭新, 姜肃猛, 孙旭东, 宫骏, 孙超. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为*[J]. 金属学报, 2016, 52(5): 625-631.
[2] 柳泉, 阳颖飞, 鲍泽斌, 朱圣龙, 王福会. PtAl2单相涂层的高温抗氧化性能及失效机制研究[J]. 金属学报, 2014, 50(9): 1102-1108.
[3] 景艳红, 刘恩泽, 郑志, 佟健, 宁礼奎, 何平. 钎料合金BCo46的抗热腐蚀性能*[J]. 金属学报, 2014, 50(1): 79-87.
[4] 肖旋,赵海强,王常帅,郭永安,郭建亭,周兰章. B和P对GH984合金组织和力学性能的影响[J]. 金属学报, 2013, 29(4): 421-427.
[5] 卢旭阳, 于大千, 姜肃猛, 刘山川,宫骏, 孙超. (NiCoCrAlYSiB+AlSiY)复合涂层热腐蚀行为的研究[J]. 金属学报, 2012, 48(4): 461-468.
[6] 陆善平 董文超 李殿中 李依依. 不锈钢材料的高效率焊接新工艺[J]. 金属学报, 2010, 46(11): 1347-1364.
[7] 张红 齐慧滨 杜翠薇 李晓刚. 湿热环境中碱性泥浆附着下镀锌钢板的腐蚀行为[J]. 金属学报, 2009, 45(3): 338-344.
[8] 吕家欣 郑 磊 张麦仓 董建新. 镍基合金FGH95在熔融NaCl--Na2SO4中的腐蚀行为[J]. 金属学报, 2009, 45(2): 204-210.
[9] 宁礼奎 郑志 谭毅 刘恩泽 佟健 于永泗 王华. 一种新型定向凝固镍基高温合金抗热腐蚀性能的研究[J]. 金属学报, 2009, 45(2): 161-166.
[10] 刘恩泽 孙树臣 涂赣峰 郑 志 宁礼奎 张凌峰. 一种新型高强抗热腐蚀DZ68镍基高温合金的研究[J]. 金属学报, 2009, 45(10): 1217-1224.
[11] 闫伟 孙凤久 王清江 刘建荣 陈志勇 李少强. Ti60合金表面电弧离子镀Ti-Al-Cr(Si, Y) 防护涂层的热腐蚀行为[J]. 金属学报, 2009, 45(10): 1171-1178.
[12] 于忠锋; 郑志; 刘恩泽; 于永洒; 朱耀宵 . 低偏析高强抗热腐蚀DZ68合金的初步研究[J]. 金属学报, 2007, 43(6): 653-658 .
[13] 李猛进; 孙晓峰; 管恒荣; 姜晓霞; 胡壮麒 . (Ni, Pd)Al涂层的高温热腐蚀[J]. 金属学报, 2004, 40(7): 773-778 .
[14] 赵双群; 谢锡善; Gaylord; D.; Smith . 新型镍基高温合金在模拟燃煤锅炉环境中的腐蚀[J]. 金属学报, 2004, 40(6): 659-.
[15] 金光熙; 乔利杰; 高克玮; 木村隆; 桥本健纪; 褚武扬 . Mn和V对TiAl合金热腐蚀的影响[J]. 金属学报, 2004, 40(2): 179-184 .