Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 529-537    DOI: 10.11900/0412.1961.2015.00411
  论文 本期目录 | 过刊浏览 |
卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*
张可1,2,雍岐龙2(),孙新军2,李昭东2,赵培林3
1 昆明理工大学材料科学与工程学院, 昆明 650093
2 钢铁研究总院工程用钢所, 北京 100081
3 莱芜钢铁集团有限公司技术中心, 莱芜 271104
EFFECT OF COILING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF Ti-V-Mo COMPLEX MICROALLOYED ULTRA-HIGH STRENGTH STEEL
Ke ZHANG1,2,Qilong YONG2(),Xinjun SUN2,Zhaodong LI2,Peilin ZHAO3
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
3 R&D Center, Laiwu Iron and Steel Group Co. Ltd., Laiwu 271104, China
全文: PDF(1422 KB)   HTML
摘要: 

利用OM, EBSD, TEM, XRD及物理化学相分析法, 对不同卷取温度下Ti-V-Mo复合微合金化热轧高强钢的强化增量进行了估算和分析, 分别讨论了卷取温度对屈服强度和MC相粒子对均匀塑性的影响规律. 结果表明, 在600 ℃卷取时具有最佳的综合力学性能: 抗拉强度为1134 MPa, 屈服强度为1080 MPa, 延伸率为13.2%, 均匀延伸率为6.8%, 其析出强化增量σp在444~487 MPa范围内, 甚至更高, 主要是由质量分数高达72.6%的10 nm以下的(Ti, V, Mo)C粒子提供的. 析出强化和细晶强化是主要的强化方式, σp的改变是导致不同卷取温度下屈服强度变化的主要因素. 随着卷取温度由500 ℃升高至600 ℃, 抗拉强度和屈服强度均不断增加, 均匀延伸率不但没有降低, 反而呈线性缓慢增加. 其主要原因是σp对屈服强度的贡献量不断提高, 在提高强度的同时改善了均匀塑性.

关键词 卷取温度析出强化屈服强度均匀塑形Ti-V-Mo    
Abstract

Among various hardening factors of steels, precipitation hardening has the least embrittlement vector value except grain refinement hardening. Giving full play to the precipitation hardening of microalloyed carbonitrides is an important aspect in the development of microalloyed high strength steels. Recently, the research on behaviors of precipitation and development of microalloyed high strength steels is mainly focused on these relatively simple microalloyed steels including single V, single Ti, Ti-V and Ti-Mo microalloyed steels, while paid less attention on complex microalloyed steels such as Ti-V-Mo steels. Therefore, it is expected to provide a theoretical basis and a practical significance for the development of Ti-V-Mo microalloyed high strength steel. Various hardening increments at different coiling temperatures were calculated. Meanwhile, the effect of coiling temperatures on yield strength and the influence of MC particles on uniform elongation were discussed by means of OM, EBSD, TEM, XRD and physical-chemical phase analysis. The results show that Ti-V-Mo steel has the best mechanical properties with ultimate tensile strength of 1134 MPa, yield strength of 1080 MPa, elongation of 13.2% and uniform elongation of 6.8% at coiling temperature of 600 ℃. The precipitation hardening increment was high to about 444~487 MPa due to the mass fraction of about 72.6% of total precipitates with a size of ?10 nm. In addition, precipitation hardening and grain refinement hardening are the main mechanisms to improve the strength of Ti-V-Mo steel, while the variation in precipitation hardening increment causes a significent difference in yield strength. With the coiling temperature increases from 500 ℃ to 600 ℃, the ultimate tensile strength and yield strength increase continuously, but the uniform elongation increases slowly instead of decreasing, which is mainly attributed to an increase of precipitation hardening increment.

Key wordscoiling temperature    precipitation hardening    yield strength    uniform elongation    Ti-V-Mo
收稿日期: 2015-07-23      出版日期: 2016-05-25
基金资助:* 国家重点基础研究发展计划项目2015CB654803, 国家自然科学基金项目51201036, 以及国家科技支撑计划项目2013BAE07B05资助

引用本文:

张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
Ke ZHANG,Qilong YONG,Xinjun SUN,Zhaodong LI,Peilin ZHAO. EFFECT OF COILING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF Ti-V-Mo COMPLEX MICROALLOYED ULTRA-HIGH STRENGTH STEEL. Acta Metall Sin, 2016, 52(5): 529-537.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00411      或      http://www.ams.org.cn/CN/Y2016/V52/I5/529

图1  Ti-V-Mo钢的轧制工艺示意图
图2  Ti-V-Mo钢在不同卷取温度下的OM像
图3  Ti-V-Mo钢不同卷取温度下的EBSD像
图4  Ti-V-Mo钢在不同卷取温度下的力学性能
Coiling MC M3C
temperature Ti* Mo V C* Fe Mn Mo V C*
500 ℃ 0.074 0.062 0.059 0.040 0.235 0.767 0.031 0.010 0.008 0.058 0.874
550 ℃ 0.095 0.116 0.105 0.052 0.322 0.516 0.029 0.012 0.015 0.041 0.613
600 ℃ 0.139 0.240 0.254 0.125 0.757 0.167 0.022 0.018 0.017 0.016 0.240
650 ℃ 0.141 0.238 0.257 0.126 0.761 0.122 0.018 0.020 0.019 0.012 0.191
表1  不同卷取温度下MC和M3C的定量相分析结果
图5  600 ℃卷取时(Ti, V, Mo)C的TEM像及其尺寸分布
Particle size / nm Mass fraction / % Volume fraction / % σp / MPa
1~5 49.4 0.4727 445
5~10 23.2 0.2220 164
10~18 24.7 0.2363 110
18~36 0.4 0.0038 9
表2  600 ℃卷取时的沉淀强化增量计算值
Coiling σo σs σg σp σd σexp σp /σexp
temperature
500 ℃ 48 165 370 214 63 860 0.249
550 ℃ 48 162 368 291 63 932 0.312
600 ℃ 48 145 380 444 63 1080 0.411
650 ℃ 48 158 370 326 63 965 0.338
表3  不同卷取温度下的各强化增量
Steel (mass fraction / %) Processing σp / MPa σg / MPa σb / MPa Ref.
0.04C-0.092Ti-0.19Mo Laboratory FRT at 900 ℃ 300 312 820 [2]
and coiled at 620 ℃
0.075C-0.17Ti-0.275Mo Laboratory FRT at 880 ℃ 276 318 951 [9]
and coiled at 620 ℃
0.059C-0.23Ti-0.19Mo Laboratory FRT at 900 ℃ and ?200 365 769 [11]
coiled at 620 ℃
0.096C-0.25Ti-0.45Mo- Laboratory FRT at (900 ±10) ℃ 330~430 420~450 1020~1170 [12]
0.031Nb-0.074V and coiled at 600 ℃
0.09C-0.093Ti-0.26Mo-0.14V Laboratory FRT at 780 ℃ and 310 361 955 [22]
coiled at 600 ℃
0.10C-0.10Ti-0.12Mo Laboratory FRT at 850~ 160 285 627 [31]
930 ℃ and coiled at 620 ℃
0.16C-0.20Ti-0.44Mo-0.41V Laboratory FRT at 870 ℃ and 444~487 380 1134 This
coiled at 600 ℃ work
表4  不同Ti-Mo成分钢的强化增量
[1] Xu Z Y.Shanghai Met, 2009; 31(2): 1
[1] (徐祖耀. 上海金属, 2009; 31(2): 1)
[2] Gan Y, Dong H.China Metall, 2004; (8): 1
[2] (干勇, 董翰.中国冶金, 2004; (8): 1)
[3] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Yamamoto T, Maeda E.ISIJ Int, 2004; 44: 1945
[4] Chen C Y, Yen H W, Kao F H, Li W C, Huang C Y, Yang J R, Wang S H.Mater Sci Eng, 2009; A499: 162
[5] Jang J H, Lee C H, Heo Y U, Suh D W.Acta Mater, 2012; 60: 208
[6] Kazuhiro S, Yoshimasa F, Shinjiro K.JFE Tech Rep, 2007; 10: 19
[7] Kang J Y. Master Thesis, Central Iron and Steel Research Institute, Beijing, 2015
[7] (康俊雨. 钢铁研究总院硕士学位论文, 北京, 2015)
[8] Kim Y W, Song S W, Seo S J, Hong S G, Lee C S.Mater Sci Eng, 2013; A565: 430
[9] Kim Y W, Kim J H, Hong S G, Lee C S.Mater Sci Eng, 2014; A605: 244
[10] Park D B, Huh M Y, Shim J H, Suh J Y, Lee K H, Jung W S.Mater Sci Eng, 2013; A560: 528
[11] Shen Y F, Wang C M, Sun X.Mater Sci Eng, 2011; A528: 8150
[12] Jha G, Das S, Sinha S, Lodh A, Haldar A.Mater Sci Eng, 2013; A561: 394
[13] Xu M, Sun X J, Liu Q Y, Dong H, Yong Q L, Huang J L.Iron Steel Vanadium Titanium, 2005; 26(3): 7
[13] (徐曼, 孙新军, 刘清友, 董瀚, 雍岐龙, 黄金亮. 钢铁钒钛, 2005; 26(3): 7)
[14] Wang Z Q.PhD Dissertation, Tsinghua University, Beijing, 2013
[14] (王振强. 清华大学博士学位论文, 北京, 2013)
[15] Zhang K, Sun X J, Yong Q L, Li Z D, Yang G W, Li Y M.Acta Metall Sin, 2015; 51: 553
[15] (张可, 孙新军, 雍岐龙, 李昭东, 杨庚蔚, 李员妹. 金属学报, 2015; 51: 553)
[16] Xu Y, Sun M X, Zhou Y L, Liu Z Y.Acta Metall Sin, 2015; 51: 31
[16] (徐洋, 孙明雪, 周砚磊, 刘振宇. 金属学报, 2015; 51: 31)
[17] Sun C F, Cai Q W, Wu H B, Mao H Y, Chen H Z.Acta Metall Sin, 2012; 48: 1415
[17] (孙超凡, 蔡庆伍, 武会宾, 毛红艳, 陈宏振. 金属学报, 2012; 48: 1415)
[18] Duan X G, Cai Q W, Wu H B, Tang D.J Univ Sci Technol Beijing, 2012; 34: 644
[18] (段修刚, 蔡庆伍, 武会宾, 唐狄. 北京科技大学学报, 2012; 34: 644)
[19] Iza-Mendia A, Gutiérrez I.Mater Sci Eng, 2013; A561: 40
[20] Yong Q L, Ma M T, Wu B R.Microalloyed Steel-Physical and Mechanical Metallurgy. Beijing: China Machine Press, 1989: 65
[20] (雍岐龙, 马鸣图, 吴宝榕. 微合金钢─物理和力学冶金. 北京: 机械工业出版社, 1989: 65)
[21] Gladman T, McLvor I D, Pickering F B.J Iron Steel Int, 1972; 210: 916
[22] Zhang K, Li Z D, Sun X J, Yong Q L, Yang J W, Li Y M, Zhao P L.Acta Metall Sin (Engl Lett), 2015; 28: 641
[23] Petch N J.J Iron Steel Inst, 1953; 174: 25
[24] Petch N J.Philos Mag, 1958; 3: 1089
[25] Bailey J E, Hirsch P B.Philos Mag, 1960; 5: 485
[26] Chin G Y, Mammel W L.Trans Metall Soc AIME, 1967; 239: 1400
[27] Keh A S.Philos Mag, 1965; 12: 9
[28] Yong Q L.Secondary Phases in Steel. Beijing: Metallurgical Industry Press, 2006: 20
[28] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 20)
[29] Ashby M F.Philos Mag, 1970; 21: 399
[30] Ashby M F.Strengthening Methods in Crystals. London: Applied Science Publishers Ltd, 1971: 137
[31] Jha G, Das S, Lodh A, Haldar A.Mater Sci Eng, 2012; A552: 457
[1] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[2] 谢锐,吕铮,卢晨阳,李正元,丁学勇,刘春明. 9Cr-ODS钢中纳米析出相的SAXS和TEM研究*[J]. 金属学报, 2016, 52(9): 1053-1062.
[3] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[4] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[5] 顾伟,李静媛,王一德. 晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能的影响*[J]. 金属学报, 2016, 52(1): 51-59.
[6] 李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
[7] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
[8] 秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.
[9] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[10] 王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.
[11] 王小娜, 韩利战, 顾剑锋. NZ30K镁合金时效析出动力学与强化模型的研究*[J]. 金属学报, 2014, 50(3): 355-360.
[12] 张龙飞,燕平,赵京晨,韩凤奎,曾强. DD407单晶高温合金760℃屈服强度的LCP模型分析[J]. 金属学报, 2013, 29(4): 489-494.
[13] NIE Defu ZHAO Jie. 相续室温蠕变中屈服强度附近的应力应变行为[J]. 金属学报, 2009, 45(7): 840-843.
[14] 崔 航 陈怀宁 陈 静 黄春玲 吴昌忠. 球形压痕法评价材料屈服强度和应变硬化指数的有限元分析[J]. 金属学报, 2009, 45(2): 189-194.
[15] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.