Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 763-768    DOI: 10.3724/SP.J.1037.2010.00690
论文 Current Issue | Archive | Adv Search |
PHYSICAL SIMULATION OF Ar BUBBLE BEHAVIOR IN THE SOLID/LIQUID INTERFACE OF CONTINUOUS CASTING BILLET
JIN Xiaoli, LEI Zuosheng, YU Zhan, ZHANG Haobin, DENG Kang, REN Zhongming
Shanghai Key Laboratory of Modern Metallurgy & Materials Processing, Shanghai University, Shanghai 200072
Cite this article: 

JIN Xiaoli LEI Zuosheng YU Zhan ZHANG Haobin DENG Kang REN Zhongming. PHYSICAL SIMULATION OF Ar BUBBLE BEHAVIOR IN THE SOLID/LIQUID INTERFACE OF CONTINUOUS CASTING BILLET. Acta Metall Sin, 2011, 47(6): 763-768.

Download:  PDF(2990KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ar gas was injected to the nozzle during continuous casting to prevent from nozzle clogging caused by solid inclusions, however, some gas bubbles were captured by the initial solidified billet shell, and subsequently billet defects were formed in final product. In present work, a physical model applying mold simulator was designed and used to investigate the bubble behavior in the solid/liquid interface. Different mold simulator angels and bubble diameters were considered, three typical behaviors were observed, some bubbles were captured by the solidified shell, several bubbles coalescence in the solid/liquid interface, and other bubbles stayed in the interface for a moment, and then left. The possible mechaism of gas bubble entrapped in solidified hell was anayzed. Besides, industial billets were studied, many dendites wee found around the hole, it was consdered to be a key factor for gas bubble engulfed in the solidification billets in the meniscus area. Further morethe effective technologes, such as electrical brake near the submerged entry nozzle and electrical stirring in the mold narrow face, can improve billet quality and reduce gas bubbles in solidified shewere imposed
Key words:  gas bubble      continuous casting billet      solid/liquid interface      simulation      meniscus     
Received:  23 December 2010     
ZTFLH: 

TF777

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50874133 and 50604010) and Shanghai Educational Committee (No.09QA1402200)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00690     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/763

[1] Zhang L, Aoki J, Thomas B G. Metall Mater Trans, 2006; 37B: 361

[2] Pfeiler C, Wu M, Ludwig A. Mater Sci Eng, 2005; A413–414: 115

[3] Thomas B G, Huang X, Sussman R C. Metall Mater Trans, 1994; 25B: 527

[4] Singh V, Dash S K, Sunitha J S, Ajmani S K, Das A K. ISIJ Int, 2006; 46: 210

[5] Yu H Q, Zhu M Y. Acta Metall Sin, 2008; 44: 619

(于海岐, 朱苗勇. 金属学报, 2008; 44: 619)

[6] Yu H Q, Zhu M Y. Acta Metall Sin, 2008; 44: 1141

(于海岐, 朱苗勇. 金属学报, 2008; 44: 1141)

[7] Yu H X, Zhu G S, Wang X H, Zhang J M, Wang W J. J Univ Sci Technol Beijing, 2003; 25: 215

(于会香, 朱国森, 王新华, 张炯明, 王万军. 北京科技大学学报, 2003, 25: 215)

[8] Zhang S J, Zhu M Y, Zhang Y L, Zheng G S, Cheng N L, Song J X. Acta Metall Sin, 2006; 42: 1087

(张胜军, 朱苗勇, 张永亮, 郑淑国, 程乃良, 宋景欣. 金属学报, 2006; 42: 1087)

[9] Cao N, Zhu M Y. Acta Metall Sin, 2008; 44: 79

(曹 娜, 朱苗勇. 金属学报, 2008; 44: 79)

[10] Cao N, Zhu M Y. Acta Metall Sin, 2008; 44: 626

(曹娜, 朱苗勇. 金属学报, 2008; 44: 626)

[11] Feng W, Zhu C Y, Yu T J, Zhang H L, Liu C J, Jiang M F. Contin cast, 2007; (4): 4

(冯巍, 朱传运, 余挺进, 张红令, 刘承军, 姜茂发. 连铸, 2007; (4): 4)

[12] Lei H, Zhu M Y, He J C. Int J Cast Met Res, 2007; 20: 98

[13] Esaka H, Kuroda Y, Shinozuka K, Tamura M. ISIJ Int, 2004; 44: 682

[14] Chen Z H, Wang E G, Zhang X W, He J C. Acta Metall Sin, 2007; 43: 422

(陈芝会, 王恩刚, 张兴武, 赫冀成. 金属学报, 2007; 43: 422)

[15] Lei Z S, Zhang H B, Ren Z M, Deng K. J Iron Steel Res Int, 2008; 15(Suppl. 1): 538

[16] Yu Z, Zhang Z Q, Ren Z M, Lei Z S, Deng K. Acta Metall Sin, 2010; 46: 1275

(于湛, 张振强, 任忠鸣, 雷作胜, 邓康. 金属学报, 2010; 46: 1275)
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[9] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[12] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[13] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[14] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
No Suggested Reading articles found!