Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 757-762    DOI: 10.3724/SP.J.1037.2010.00660
论文 Current Issue | Archive | Adv Search |
MECHANICAL PROPERTIES OF SUPER–HIGH STRENGTH Al ALLOY 7A04 AT TRANSIENT HEATING
WU Dafang, PAN Bing, WANG Yuewu, ZHAO Shougen, YANG Hongyuan, HUANG Liang
School of Aeronautical Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191
Cite this article: 

WU Dafang PAN Bing WANG Yuewu ZHAO Shougen YANG Hongyuan HUANG Liang. MECHANICAL PROPERTIES OF SUPER–HIGH STRENGTH Al ALLOY 7A04 AT TRANSIENT HEATING. Acta Metall Sin, 2011, 47(6): 757-762.

Download:  PDF(1661KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Super–hard aluminum alloy 7A04 (Al–Zn–Mg–Cu), whose ultimate strength is higher than that of duralumin, belongs to a class of aluminum alloys with highest ultimate strength tested at room temperature. As it can be utilized as structural material of various heating components such as rocket liquid storage tank and missile wing, super–hard aluminum alloy 7A04 has been widely used in the field of aerospace engineering. However, the ultimate strength and other token mechanical parameters of aluminum alloy 7A04 at transient high–temperature heating environment are still unclear to us, as these key mechanical parameters are lacking in existing strength design handbook. Experimental characterization of these critical parameters of aluminum alloy 7A04 is undoubtedly meaningful to the reliability estimation, life prediction and security design of the high–speed flight vehicle. In this paper, by combining transient aerodynamic heating simulation system and material testing machine, the high–temperature ultimate strength, loading time and oher mechanical properties of super–hard aluminum alloy 7A04 undedifferent transient heating temperature and loading conditions were investigated Experimental results revealed that the ultimate strength and loading capability of aluminum alloy 7A04 subjected to transient thermal heating were much higher than those teted in a long–time stable high–temperature environmen. The results provided substantial basis fr the loading capability improvement nd optmal design of erospace materials and stuctures subject to transient heating.
Key words:  Al alloy      thermal strength test      aerodynamic heating      ultimate strength     
Received:  08 December 2010     
ZTFLH: 

TG 146.2

 
  TG 113.2

 
Fund: 

Supported by National Natural Science Foundation of China(No.11002012)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00660     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/757

[1] Kapoor K, Murlidharan K, Sreedharan K M. J Mater Eng Perform, 1995; 4: 610

[2] Witkin D, Han B Q, Lavernia E J. J Mater Eng Perform, 2005; 14: 519

[3] Taleff E M, Nevland P J, Krajewski P E. Metall Mater Trans, 2001; 32A: 1119

[4] Tang Z L, Yan X D, Li J P, Xu X J, Mao B P, Shen J. Chin J Rare Met, 2010; 34: 516

(汤振雷, 闫晓东, 李俊鹏, 许晓静, 毛柏平, 沈健. 稀有金属, 2010: 34: 516)

[5] Zhang X M, Liu B, Liu Y, Li H Z, Li H J. Chin J Nonferrous Met, 2007; 17: 1561

(张新明, 刘波, 刘瑛, 李慧中, 李惠杰. 中国有色金属学报,2007; 17: 1561)

[6] Yang Y M, Peng X H, Chen Y Z, Yin Y HChen G. Acta Metall Sin, 2000; 36: 926

(杨运民, 彭向和, 陈裕泽, 尹益辉, 陈刚. 金属学报, 2000; 36: 926)

[7] Han M B, Liu Z D, Liu Y G. Expl Shock Waves, 1999; 19(1): 20

(韩铭宝, 刘宗德, 刘怡光. 爆炸与冲击, 1999; 19(1): 20)

[8] Tan Y, Yu Y, Pan X X, Li G D, Zhang F J, Feng J, Zhou D H, Rong L J, Ma L M. Acta Metall Sin, 2002; 38: 684

(谭云, 余勇, 潘晓霞, 李光东, 张方举, 丰 杰, 周德惠,戎利建, 马禄铭. 金属学报, 2002; 38: 684)

[9] Kaschniz E, Reiter P, McClure J L. Int J Thermophys, 2002; 23: 267

[10] Sameshima T, Kaneko Y, Andoh N. Mater Sci Process,2002; 74A: 719

[11] CheB, Peng X H, Yang Y M, Wang J. Acta Metall Sin, 2001; 37: 1256

(陈斌, 彭向和, 杨运民, 王军. 金属学报, 2001; 37: 1256)

[12] Li M, Song Y Q, Cui S, YU X Z, Li Z DChinese J Rare Met, 2007; 31: 420

(李明, 宋月清, 崔舜, 于兴哲, 李增德. 稀有金属, 2007; 31: 420)

[13] Wu D F, Fang Y P, Zhang M. Aviat Metrol Meas Technol, 2003; 23(1): 9

(吴大方, 房元鹏, 张敏. 航空计测技术, 2003; 23(1): 9)

[14] Wu D F, Gao Z T, Wang Y H. J Beijing Univ Aeronaut Astronaut, 2000; 28: 682

(吴大方, 高镇同, 王永海. 北京航空航天大学学报, 2000; 28: 682)

[15] The Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook. 2nd ed. Vol.3. Beijing: Standard Press of China, 2002: 247

(《中国航空材料手册》编辑委员会. 中国航空材料手册(第2版). 第三卷. 北京: 中国标准出版社, 2002: 247)
[1] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[2] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[4] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[5] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[7] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[8] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[9] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
[10] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[11] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[12] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[13] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[14] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[15] SHEN Yuanyuan, DONG Yaohua, DONG Lihua, YIN Yansheng. Corrosion Inhibition Effect of Microorganism on 5754 Al Alloy in Seawater[J]. 金属学报, 2020, 56(12): 1681-1689.
No Suggested Reading articles found!