|
|
MECHANICAL PROPERTIES OF SUPER–HIGH STRENGTH Al ALLOY 7A04 AT TRANSIENT HEATING |
WU Dafang, PAN Bing, WANG Yuewu, ZHAO Shougen, YANG Hongyuan, HUANG Liang |
School of Aeronautical Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191 |
|
Cite this article:
WU Dafang PAN Bing WANG Yuewu ZHAO Shougen YANG Hongyuan HUANG Liang. MECHANICAL PROPERTIES OF SUPER–HIGH STRENGTH Al ALLOY 7A04 AT TRANSIENT HEATING. Acta Metall Sin, 2011, 47(6): 757-762.
|
Abstract Super–hard aluminum alloy 7A04 (Al–Zn–Mg–Cu), whose ultimate strength is higher than that of duralumin, belongs to a class of aluminum alloys with highest ultimate strength tested at room temperature. As it can be utilized as structural material of various heating components such as rocket liquid storage tank and missile wing, super–hard aluminum alloy 7A04 has been widely used in the field of aerospace engineering. However, the ultimate strength and other token mechanical parameters of aluminum alloy 7A04 at transient high–temperature heating environment are still unclear to us, as these key mechanical parameters are lacking in existing strength design handbook. Experimental characterization of these critical parameters of aluminum alloy 7A04 is undoubtedly meaningful to the reliability estimation, life prediction and security design of the high–speed flight vehicle. In this paper, by combining transient aerodynamic heating simulation system and material testing machine, the high–temperature ultimate strength, loading time and oher mechanical properties of super–hard aluminum alloy 7A04 undedifferent transient heating temperature and loading conditions were investigated Experimental results revealed that the ultimate strength and loading capability of aluminum alloy 7A04 subjected to transient thermal heating were much higher than those teted in a long–time stable high–temperature environmen. The results provided substantial basis fr the loading capability improvement nd optmal design of erospace materials and stuctures subject to transient heating.
|
Received: 08 December 2010
|
|
Fund: Supported by National Natural Science Foundation of China(No.11002012) |
[1] Kapoor K, Murlidharan K, Sreedharan K M. J Mater Eng Perform, 1995; 4: 610[2] Witkin D, Han B Q, Lavernia E J. J Mater Eng Perform, 2005; 14: 519[3] Taleff E M, Nevland P J, Krajewski P E. Metall Mater Trans, 2001; 32A: 1119[4] Tang Z L, Yan X D, Li J P, Xu X J, Mao B P, Shen J. Chin J Rare Met, 2010; 34: 516(汤振雷, 闫晓东, 李俊鹏, 许晓静, 毛柏平, 沈健. 稀有金属, 2010: 34: 516)[5] Zhang X M, Liu B, Liu Y, Li H Z, Li H J. Chin J Nonferrous Met, 2007; 17: 1561(张新明, 刘波, 刘瑛, 李慧中, 李惠杰. 中国有色金属学报,2007; 17: 1561)[6] Yang Y M, Peng X H, Chen Y Z, Yin Y HChen G. Acta Metall Sin, 2000; 36: 926(杨运民, 彭向和, 陈裕泽, 尹益辉, 陈刚. 金属学报, 2000; 36: 926)[7] Han M B, Liu Z D, Liu Y G. Expl Shock Waves, 1999; 19(1): 20(韩铭宝, 刘宗德, 刘怡光. 爆炸与冲击, 1999; 19(1): 20)[8] Tan Y, Yu Y, Pan X X, Li G D, Zhang F J, Feng J, Zhou D H, Rong L J, Ma L M. Acta Metall Sin, 2002; 38: 684(谭云, 余勇, 潘晓霞, 李光东, 张方举, 丰 杰, 周德惠,戎利建, 马禄铭. 金属学报, 2002; 38: 684)[9] Kaschniz E, Reiter P, McClure J L. Int J Thermophys, 2002; 23: 267[10] Sameshima T, Kaneko Y, Andoh N. Mater Sci Process,2002; 74A: 719[11] CheB, Peng X H, Yang Y M, Wang J. Acta Metall Sin, 2001; 37: 1256(陈斌, 彭向和, 杨运民, 王军. 金属学报, 2001; 37: 1256)[12] Li M, Song Y Q, Cui S, YU X Z, Li Z DChinese J Rare Met, 2007; 31: 420(李明, 宋月清, 崔舜, 于兴哲, 李增德. 稀有金属, 2007; 31: 420)[13] Wu D F, Fang Y P, Zhang M. Aviat Metrol Meas Technol, 2003; 23(1): 9(吴大方, 房元鹏, 张敏. 航空计测技术, 2003; 23(1): 9)[14] Wu D F, Gao Z T, Wang Y H. J Beijing Univ Aeronaut Astronaut, 2000; 28: 682(吴大方, 高镇同, 王永海. 北京航空航天大学学报, 2000; 28: 682)[15] The Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook. 2nd ed. Vol.3. Beijing: Standard Press of China, 2002: 247(《中国航空材料手册》编辑委员会. 中国航空材料手册(第2版). 第三卷. 北京: 中国标准出版社, 2002: 247) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|