Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (10): 1021-1027    DOI:
Current Issue | Archive | Adv Search |
THE EFFECT OF STRAIN RATE ON THE BRITTLE-TO-DUCTILE TRANSITION
WANG Yu;LIN Dongliang(T.L.Lin); LIU Junliang(Shanghai Jiao Tong University;High-Temperature Materials and High-Temperature Testing Open Laboratory of Nalional Education Committee of China; Shanghai 200030); C.C.Law (Materials and Mechanics Engineering; United Technologies Company-Pratt & Whitney 400 Main Streel; East Hart ford; CT 06108; U.S.a)
Cite this article: 

WANG Yu;LIN Dongliang(T.L.Lin); LIU Junliang(Shanghai Jiao Tong University;High-Temperature Materials and High-Temperature Testing Open Laboratory of Nalional Education Committee of China; Shanghai 200030); C.C.Law (Materials and Mechanics Engineering; United Technologies Company-Pratt & Whitney 400 Main Streel; East Hart ford; CT 06108; U.S.a). THE EFFECT OF STRAIN RATE ON THE BRITTLE-TO-DUCTILE TRANSITION. Acta Metall Sin, 1997, 33(10): 1021-1027.

Download:  PDF(2199KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of strain rate is studied on the tensile yield strength and elongation of γtitanium aluminide with a near lamellar microstructure. It is found that γ titanium aluminide manifests brittle-to-ductile transition (BDT) at elevated temperature and the brit-tle-to-ductile transition temperature (TBDT) is positively sensitive to the strain rate. The activation energy of BDT has been determined to be 324 kJ / mol, which is approximately the same as the self-diffusion activation energy of atoms in the Tial alloy. From the approximation, and the additional fractography analysis and theoretical calculation, it is concluded that the course of γtitanium aluminide is controlled by dislocation climbing.
Key words:  titanium aluminide      intermetallics      brittle-to-ductile transition      strain rate     
Received:  18 October 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I10/1021

1 Kim Y W, JOM, 1994; 46:30
2 Huang S C,Hall E L.Metall Trans a,1991;22:47
3 Kumpfert J,Kim Y W,Dimiduk D M.Mater Sci Eng a,1995;192/193:465
4 Zener C,Hollomon J J appl Phhs,9144;39:163
5 Kroll S,Mehrer H,Stolwijk N,Herzig C,Rosenkranz R,Frommeyer G.Z Mettallkd,1992;83:591
6 Sprengel W, Oikawa N Nakajima H. Intermetallics.1996; 4: 185
7 Groves G W,Kelly a.Phil Mag,1969;19:977
8 Schafrik R E. Metall Trans a, 1977; 8:1003
9 Kad B K. Fraser H L. Phil Mag,1994; 69:689{
[1] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[6] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[7] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[8] Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. 金属学报, 2018, 54(11): 1625-1636.
[9] Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content[J]. 金属学报, 2017, 53(8): 927-936.
[10] Xifeng LI, Nannan CHEN, Jiaojiao LI, Xueting HE, Hongbing LIU, Xingwei ZHENG, Jun CHEN. Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy[J]. 金属学报, 2017, 53(8): 968-974.
[11] Xu YANG, Bo LIAO, Jian LIU, Wei YAN, Yiyin SHAN, Furen XIAO, Ke YANG. Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi[J]. 金属学报, 2017, 53(5): 513-523.
[12] Li ZHOU,Chao CUI,Qing JIA,Yingshi MA. Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics[J]. 金属学报, 2017, 53(4): 505-512.
[13] Jihou LIU,Hongyun ZHAO,Zhuolin LI,Xiaoguo SONG,Hongjie DONG,Yixuan ZHAO,Jicai FENG. Microstructures and Mechanical Properties of Cu/Sn/Cu Structure Ultrasonic-TLP Joint[J]. 金属学报, 2017, 53(2): 227-232.
[14] Guotian WANG, Hongsheng DING, Ruirun CHEN, Jingjie GUO, Hengzhi FU. Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique[J]. 金属学报, 2017, 53(11): 1461-1468.
[15] Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2016, 52(9): 1123-1132.
No Suggested Reading articles found!