Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (12): 1279-1283    DOI:
Current Issue | Archive | Adv Search |
INTERFACIAL CHARACTER OF PRIMARY α_2/γLAMELLAE FOR γ-TiAl-BASED(α_2+γ) TWO-PHASE AllOY
QIN Gaowu; HAO Shiming(School of Material & Metallurgy; Northeastern University; Shenyang 110006)SONG DanMaterials Test Center; Northeastern University; Shenyang 110006)Correspondent:QIN Gaowu; Tel: (oB4)-2389000- : (o4)23906316;E-mail: gwqin@mail neu.edu cnManuscript received 1997-12-16; in revised form 1998-04-02
Cite this article: 

QIN Gaowu; HAO Shiming(School of Material & Metallurgy; Northeastern University; Shenyang 110006)SONG DanMaterials Test Center; Northeastern University; Shenyang 110006)Correspondent:QIN Gaowu; Tel: (oB4)-2389000- : (o4)23906316;E-mail: gwqin@mail neu.edu cnManuscript received 1997-12-16; in revised form 1998-04-02. INTERFACIAL CHARACTER OF PRIMARY α_2/γLAMELLAE FOR γ-TiAl-BASED(α_2+γ) TWO-PHASE AllOY. Acta Metall Sin, 1998, 34(12): 1279-1283.

Download:  PDF(1641KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The interfacial character and formation of primary α2/γ lamellae in the or orsupersaturated α2 matrix for γ-TiAl-based (α2+γ) two-phase alloy were investigated by opticalmicroscopy and TEM. The formation of primary α2/γ lamellae is through either α-α2γorα- α+γ -α2+γ transformation. Theγ lamella nucleates at grain boundary and growsthrough the ledge mechanism controlled by volume diffusion process. The growth velocity of 7lamellae along the longitudinal direction in the matriX is about (1.0 - 3.33) x 10(-7) m/s. Theprimary or2/7 interface was determined to be sendcoherent, and the α2/γ interfacial energy wasestimated to be about 0.274 J/m2.
Key words:  ledge mechanism      interfacial dislocation      TiAl alloy      primary α2/γ lamellae      misfit     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I12/1279

1 Kattner U R, Lin J C, Chang Y A Metall Trans , 1992; 23A: 2081
2 Zhao L, Tangri K. Acta Metall Mater, 1991; 39: 2209
3方鸿生,王家军 兵器材料科学与工程,1994;17:3(Fang H S, Wang J J J Weaponary Mater Sci Eng, 1994; 17: 3)
4Mahon G J,Howe J M.Metall Trans,1990;A57:1655
5 Porter D A,Easterling K E,Phase Transformations in Metals and Alloys .Oxford :the Alden Press;1981145
6冯端 金属物理学第二卷,北京:科学出版社,1990:158(Feng D Physical Metallurgy,Vol.2Beijing:Vol. 2.Beijing:Science Press,1990:158)
7 ouchi K,Ijima Y,Hirano K .In:Kimura H and Izumi O eds.Titanium'80,Science and Technology,Warrendale: TMS—AIME, 1980: 559
8 祖涵.金属的晶体缺陷与软科学性能.北京:冶金出版社.1988:176(Lai Z H. Crystal Defects and Mechanical Properties of Metals.Beijing: Metallurgy Press, 1988:176)
9 Jin Z, Bieler T R. Mate, Sci Eng, 1995; A192/193: 729
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[3] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[4] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[5] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[6] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[7] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[8] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[9] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[10] Yu ZHANG, Qing WANG, Honggang DONG, Chuang DONG, Hongyu ZHANG, Xiaofeng SUN. Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃[J]. 金属学报, 2018, 54(4): 591-602.
[11] Yu PAN, Xin LU, Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU. Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys[J]. 金属学报, 2018, 54(1): 93-99.
[12] Tianrui LI, Guohuai LIU, Mang XU, Hongzhi NIU, Tianliang FU, Zhaodong WANG, Guodong WANG. Microstructures and High Temperature Tensile Properties of Ti-43Al-4Nb-1.5Mo Alloy in the Canned Forging andHeat Treatment Process[J]. 金属学报, 2017, 53(9): 1055-1064.
[13] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[14] Gang WANG,Lei XU,Yuyou CUI,Rui YANG. DENSIFICATION MECHANISM OF TiAl PRE-ALLOY POWDERS CONSOLIDATED BY HOT ISOSTATIC PRESSING AND EFFECTS OF HEAT TREATMENTON THE MICROSTRUCTURE OF TiAl POWDER COMPACTS[J]. 金属学报, 2016, 52(9): 1079-1088.
[15] Biao YANG,Bailin ZHENG,Xingjian HU,Pengfei HE,Zhufeng YUE. EFFECT OF VOID ON NANOINDENTATION PROCESS OF Ni-BASED SINGLE CRYSTAL ALLOY[J]. 金属学报, 2016, 52(2): 129-134.
No Suggested Reading articles found!