Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (1): 93-99    DOI: 10.11900/0412.1961.2017.00143
Orginal Article Current Issue | Archive | Adv Search |
Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys
Yu PAN, Xin LU(), Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Yu PAN, Xin LU, Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU. Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys. Acta Metall Sin, 2018, 54(1): 93-99.

Download:  HTML  PDF(877KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High Nb containing TiAl alloys (TiAl-Nb) are a new generation of materials for high temperature structural applications because of their low density, high strength and corrosion resistance at elevated temperatures. The alloys can be processed by powder metallurgy (PM) which have more advantages including low cost-effectiveness, near net forming for complex parts with fine grain size and uniform microstructure. However, the alloy powders are difficult to achieve full densification due to their lower sintering activity, which impairs the mechanical performance of sintered parts. The present work focuses on the densification performance of TiAl-Nb alloy powders with 1%Sn (atomic fraction) as sintering aids.The effects of Sn addition on the sintering densification process, microstructure and mechanical properties of sintered alloys were investigated. The results show that 1%Sn addition can significantly reduce the sintering densification temperature of alloy powders, and increase the relative density and linear shrinkage of sintered parts. This contributes to control microstructure grain size and improve the comprehensive properties. Sintered with 1500 ℃ for 2 h, 1%Sn containing TiAl-Nb base alloys show the best densification performance, with the relative density of 99.1% and linear shrinkage of 9.3%. The alloy samples exhibit fine and uniform full lamellar microstructure, and α2/γ lamellar colonies are sized about 40~60 μm. Sn mainly dissolved into γ phase, leading to the enhancement of axial ratio c/a and unit cell volume. The sintered TiAl-Nb-1Sn samples have been found to possess superior room-temperature mechanical properties, with a Rockwell hardness of 50.1 HRC, a compressive strength of 2938 MPa, a yield strength of 680 MPa, and a compression ratio of 29.1%, which is obviously higher than those of TiAl-Nb alloys.

Key words:  TiAl alloy      powder metallurgy      Sn      sintering densification     
Received:  21 April 2017     
ZTFLH:  TG146.2  
Fund: Supported by Natural Science Foundation of Beijing (No.2163053)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00143     OR     https://www.ams.org.cn/EN/Y2018/V54/I1/93

Fig.1  SEM images of high Nb containing TiAl alloys powders (a) and Sn powders (b)
Fig.2  Influence of sintering temperature on relative density and linear shrinkage of TiAl-xSn (x=0, 1) alloys
Fig.3  Influence of sintering temperature on Rockwell hardness of TiAl-xSn (x=0, 1) alloys
Fig.4  XRD spectra of TiAl-xSn (x=0, 1) alloys sintered at different temperatures
Fig.5  SEM images of TiAl-xSn (x=0, 1) alloys sintered at different temperatures (Inset in Fig.5b shows the magnified image of rectangular zone)
(a) TiAl-0Sn, 1440 ℃ (b) TiAl-1Sn, 1440 ℃ (c) TiAl-0Sn, 1500 ℃ (d) TiAl-1Sn, 1500 ℃ (e) TiAl-0Sn, 1520 ℃ (f) TiAl-1Sn, 1520 ℃
Fig.6  Relationships between sintering temperature and room temperature compression property of TiAl-xSn (x=0, 1) alloys
(a) strength vs temperature (b) compression ratio vs temperature
Fig.7  Engineering stress-strain curves of TiAl-xSn (x=0, 1) alloys for compresed properties at room temperature
Fig.8  SEM images of fracture surfaces of the TiAl-xSn (x=0, 1) alloys after compress testing
(a) TiAl-0Sn, 1520 ℃ (b) TiAl-1Sn, 1500 ℃
[1] Song L, Lin J P, Li J S.Phase transformation mechanisms in a quenched Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y alloy after subsequent annealing at 800 ℃[J]. J. Alloys Compd., 2017, 691: 60
[2] San J J, Simas P, Schmoelzer T, et al.Atomic relaxation processes in an intermetallic Ti-43Al-4Nb-1Mo-0.1B alloy studied by mechanical spectroscopy[J]. Acta Mater., 2014, 65: 338
[3] Park S Y, Seo D Y, Kim S W, et al.High temperature oxidation of Ti-46Al-6Nb-0.5W-0.5Cr-0.3Si-0.1C alloy[J]. Intermetallics, 2016, 74: 8
[4] Lin J P, Zhao L L, Li G Y, et al.Effect of Nb on oxidation behavior of high Nb containing TiAl alloys[J]. Intermetallics, 2011, 19: 131
[5] Bean G E, Kesler M S, Manuel M V.Effect of Nb on phase transformations and microstructure in high Nb titanium aluminides[J]. J. Alloys Compd., 2014, 613: 351
[6] Chen G, Peng Y B, Zheng G, et al.Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nat. Mater., 2016, 15: 876
[7] Li H Z, Qi Y L, Liang X P, et al.Microstructure and high temperature mechanical properties of powder metallurgical Ti-45Al-7Nb-0.3W alloy sheets[J]. Mater. Des., 2016, 106: 90
[8] Li J B, Liu Y, Liu B, et al.Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy[J]. Mater. Charact., 2014, 95: 148
[9] Liu Q, Nash P.The effect of Ruthenium addition on the microstructure and mechanical properties of TiAl alloys[J]. Intermetallic, 2011, 19: 1282
[10] Monchoux J P, Luo J S, Voisin T, et al.Deformation modes and size effect in near-γ TiAl alloys[J]. Mater. Sci. Eng., 2017, A679: 123
[11] Liu H W, Bishop D P, Plucknett K P.Densification behaviour and microstructural evolution of Ti-48Al consolidated by spark plasma sintering[J]. J. Mater. Sci., 2017, 52: 613
[12] Yang R.Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129(杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129)
[13] Han Y, Fan J L, Liu T, et al.The effect of trace nickel additive and ball milling treatment on the near-full densification behavior of ultrafine tungsten powder[J]. Int. J. Refract. Met. Hard Mater., 2012, 34: 8
[14] Wang Y H, Lin J P, He Y H, et al.Densification behavior of high Nb containing TiAl alloys through reactive hot pressing[J]. J. Univ. Sci. Technol. Beijing, 2007, 14: 251
[15] Hibino A, Kiuchi M.Pressureless combustion synthesis of dense TiAl intermetallic compounds by Ni/Al powder addition[J]. Mater. Trans., JIM, 1999, 40: 92
[16] Liu Y, Wei W F, Huang B Y, et al.Qualitative and quantitative theory of enhanced sintering in powder metallurgy[J]. Mater. Rev., 2003, 17(3): 1(刘咏, 韦伟峰, 黄伯云等. 粉末冶金强化烧结的定性与定量分析理论综述[J]. 材料导报, 2003, 17(3): 1)
[17] Qiu W T, Pang Y, Xiao Z, et al.Preparation of W-Cu alloy with high density and ultrafine grains by mechanical alloying and high pressure sintering[J]. Int. J. Refract. Met. Hard Mater., 2016, 61: 91
[18] Pan K M, Zhang L Q, Wei S Z, et al.Study on the preparation process of T2 alloy in the Mo-Si-B system[J]. Acta Metall. Sin., 2015, 51: 1377(潘昆明, 张来启, 魏世忠等. Mo-Si-B三元系中T2相合金的制备工艺研究[J]. 金属学报, 2015, 51: 1377)
[19] Zhu Q S, Fan B A.Low temperature sintering of 8YSZ electrolyte film for intermediate temperature solid oxide fuel cells[J]. Solid State Ionics, 2005, 176: 889
[20] Zhou H M, Li M L, Guo Y J, et al.Effect of MnO2 on sintering ability and properties of 8YSZ[J]. J. Cent. South Univ.(Sci. Technol.), 2012, 43: 1254(周宏明, 李淼磊, 郭雁军等. MnO2对8YSZ低温活化烧结及其性能的影响[J]. 中南大学学报(自然科学版), 2012, 43: 1254)
[21] Xia Y, Luo S D, Wu X, et al.The sintering densification, microstructure and mechanical properties of gamma Ti-48Al-2Cr-2Nb alloy with a small addition of copper[J]. Mater. Sci. Eng., 2013, A559: 293
[22] Xia Y, Schaffer G B, Qian M.The effect of a small addition of nickel on the sintering, sintered microstructure, and mechanical properties of Ti-45Al-5Nb-0.2C-0.2B alloy[J]. J. Alloys Compd., 2013, 578: 195
[23] Xia Y, Yu P, Schaffer G B, et al.Cobalt-doped Ti-48Al-2Cr-2Nb alloy fabricated by cold compaction and pressureless sintering[J]. Mater. Sci. Eng., 2013, A574: 176
[24] Soyama J, Oehring M, Limberg W, et al.The effect of zirconium addition on sintering behaviour, microstructure and creep resistance of the powder metallurgy processed alloy Ti-45Al-5Nb-0.2B-0.2C[J]. Mater. Des., 2015, 84: 87
[25] He Y H, Qu X H, Huang B Y, et al.The effect of Sn addition on the TiAl based alloy[J]. J. Central South Univ.(Sci. Technol.), 1993, 24: 788(贺跃辉, 曲选辉, 黄伯云等. 锡的添加对TiAl基合金的影响[J]. 中南大学学报(自然科学版), 1993, 24: 788)
[26] Shida Y, Anada H.The influence of ternary element addition on the oxidation behaviour of TiAl intermetallic compound in high temperature air[J]. Corros. Sci., 1993, 35: 945
[27] Wang D N, Inui H, Lin D L, et al.Effects of Sn additions on the microstructures and tensile properties of two-phase TiAl alloys[J]. Intermetallics, 1996, 4: 191
[28] Zhao J C.Effect of alloying on the microstructure and mechanical properties of Ti-48Al-2Cr-2Nb alloys [D]. Changsha: Xiangtan University, 2015(赵俊才. 合金化对Ti-48Al-2Cr-2Nb合金显微组织和力学性能的影响 [D]. 长沙: 湘潭大学, 2015)
[29] Lu X, He X B, Zhang B, et al.Microstructure and mechanical properties of a spark plasma sintered Ti-45Al-8.5Nb-0.2W-0.2B-0.1Y alloy[J]. Intermetallics, 2009, 17: 840
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[3] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[4] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[5] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[6] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[9] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[10] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[11] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[12] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[13] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[14] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[15] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
No Suggested Reading articles found!