Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (5): 605-609    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF LaCoO3 COATING ON THE INTERMEDIATE TEMPERATURE OXIDATION BEHAVIOR OF SUS 430 METALLIC INTERCONNECT
HUA Bin 1; ZHANG Jianfu 2; LU Fengshuang 2; KONG Yonghong 1; PU Jian 1; LI Jian 1
1. College of Materials Science and Engineering; State Key Laboratory of Material Processing and Die & Mould Technology; Huazhong University of Science & Technology; Wuhan 430074
2. Central Iron & Steel Research Institute; Beijing 100081
Cite this article: 

HUA Bin ZHANG Jianfu LU Fengshuang KONG Yonghong PU Jian LI Jian. EFFECT OF LaCoO3 COATING ON THE INTERMEDIATE TEMPERATURE OXIDATION BEHAVIOR OF SUS 430 METALLIC INTERCONNECT. Acta Metall Sin, 2009, 45(5): 605-609.

Download:  PDF(1117KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low costly ferritic stainless steels, especially the Cr2O3–forming alloys, are promising interconnect materials for solid oxide fuel cells (SOFCs) due to their thermal expansion compatibility with other cell components. However, the oxidation resistance of commercial ferritic stainless steels in the operating temperature range of 600—800 ℃ is not adequate, forming relatively thick, poorly conducting oxide scale on the surface of the stainless steel interconnect and decreasing the cell performance. Surface modification is necessary to improve the oxidation behavior and electrical property. The present study investigates the effect of a LaCoO3 protective coating by the sol–gel process on the intermediate temperature oxidation behavior of SUS 430 alloy, which is frequently considered as the interconnect material for SOFCs. X–ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the phase structure, surface morphology and composition of the coating and the oxide scale. The "4–probe" method was employed to determine the area specific resistance (ASR) of the surface oxides. Long–term thermally cyclic oxidation at 750 ℃in air has shown that the oxidation kinetics obeys the parabolic rule with a rate constant of K=4.18×10−15 g2/(cm4·s), which is 1—2 orders of magnitude lower than that of the uncoated alloy, the LaCoO3 protective coating effectively suppresses the formation of Cr2O3 and slows down the growth of MnCr2O4 spinel. As a result, the oxidation resistance and electrical conductivity of the coated SUS 430 alloy are significantly enhanced, resulting in an ASR at 750 ℃of only 3.13 m·cm2 after oxidation at 750 ℃ for 850 h in air and an extrapolated ASR of 21.5 m·cm2 for 4×104 h oxidation.

Key words:  solid oxide fuel cell (SOFC)      metallic interconnect      LaCoO3      oxidation      area specific resistance (ASR)     
Received:  20 October 2008     
ZTFLH: 

TG146

 
Fund: 

Supported by National High Technology Research and Development Program of China (No.2006AA03Z227) and National Natural Science Foundation of China (No.50771048)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I5/605

1] Fergus J W. Mater Sci Eng, 2005; A397: 271
[2] Huang K, Hou P Y, Goodenough J B. Solid State Ionics, 2000; 129: 237
[3] Brylewski T, Nanko M, Maruyama T, Przybylski K. Solid State Ionics, 2001; 143: 131
[4] Horita T, Xiong Y, Yamaji K, Sakai N, Yokokawa H. J Electrochem Soc, 2003; 150A: 243
[5] Kurokawa H, Kawamura K, Maruyama T. Solid State Ionics , 2004; 168: 13
[6] Yang Z, Hardy J S,Walker M S, Xia G, Simner S P, Stevenson J W. J Electrochem Soc, 2004; 151A: 1825
[7] Simner S P, Anderson M D, Xia G G, Yang Z, Pederson L R, Stevenson J W. J Electrochem Soc, 2005; 152A: 740
[8] Pu J, Li J, Hua B, Xie G. J Power Sources, 2006; 158: 354
[9] Jiang S P, Zhang S, Zhen Y D. J Mater Res, 2005; 20: 747
[10] Jiang S P, Zhen Y D, Zhang S. J Electrochem Soc, 2006; 153A: 151
[11] Hilpert K, Das D, Miller M, Peck D H, Weiss R. J Electrochem Soc, 1996; 143: 3642
[12] Stanislowski M,Wessel E, Hilpert K, Markus T, Singheiser L. J Electrochem Soc, 2007; 154A: 295
[13] Fergus J W. Solid State Ionics, 2004; 171: 1
[14] Zhu J H, Zhang Y, Basu A, Lu Z G, Paranthaman M, Lee D F, Payzant E A. Surf Coat Technol, 2004; 177–178: 65
[15] Kim J H, Song R H, Hyun S H. Solid State Ionics, 2004; 174: 185
[16] Chu C L, Wang J Y, Lee S. Int J Hydrogen Energy, 2008; 33: 2536
[17] Stanislowski M, Froitzheim J, Niewolak L, Quadakkers W J, Hilpert K, Markus T, Singheiser L. J Power Sources, 2007; 164: 578
[18] Qu W, Li J, Ivey D G. J Power Sources, 2004; 138: 162
[19] Qu W, Li J, Ivey D G, Hill J M. J Power Sources, 2006; 157: 335
[20] Lobnig R E, Schmidt H P, Hennesen K. Oxide Met, 1992; 37: 81

[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[3] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[4] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[5] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[6] HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. 金属学报, 2023, 59(10): 1346-1354.
[7] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[8] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[9] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[10] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[11] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[12] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[13] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[14] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[15] PI Huilong, SHI Xiaolei, XU Xingxiang. Effect of SiC-ZrC Coating Prepared by SiZr Liquid Phase Sintering on the Oxidation Resistance of C/SiC Composites[J]. 金属学报, 2021, 57(6): 791-796.
No Suggested Reading articles found!