Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (4): 400-404    DOI:
论文 Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS SIMULATION OF THE INTERACTION BETWEEN 30o PARTIAL DISLOCATION AND MONOVACANCY IN Si
WANG Chaoying; MENG Qingyuan; WANG Yuntao
Dept of Astronautical Science and Mechanics; Harbin Institute of Technology; Harbin 150001
Cite this article: 

WANG Chaoying MENG Qingyuan WANG Yuntao. MOLECULAR DYNAMICS SIMULATION OF THE INTERACTION BETWEEN 30o PARTIAL DISLOCATION AND MONOVACANCY IN Si. Acta Metall Sin, 2009, 45(4): 400-404.

Download:  PDF(2217KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dislocation and monovacancy (V1) are the fundamental defects in Si. The interaction between them is concerned with the electronic and optical properties of electronic devices. In this paper, the interactions of 30o partial dislocation with V1 in Si were investigated by the molecular dynamics simulation method based on the Stillinger–Weber (SW) potential. The simulations were conducted under different temperature and shear stress conditions. The results show that 30o partial dislocation is pinned when dislocation encounters the V1 under the conditions that shear stress is relatively low and the temperature is kept constant. When the shear stress increases to a critical value, the dislocation can overcome the pin and the V1 is left in the crystal. As the temperature increases, the critical shear stress decreases approximately as a linear function. Moreover, the values of the critical shear stress corresponding to different dislocation kinks also show that the abilites of kinks to overcome the pin are determinded by the migration barriers of kinks. In comparison of the locations of dislocation core in two models with and without V1, it is found that the V1 can make the 30o partial dislocation move faster once the dislocation glides away from the V1 .

Key words:  Si      30o partial dislocation      monovacancy      molecular dynamics      kink     
Received:  08 September 2008     
ZTFLH: 

O411.3

 
  O77

 
Fund: 

Supported by National Natural Science Foundation of China (No.10772062)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I4/400

[1] Paul D J. Thin Sold Films, 1998; 321: 172
[2] Graebner J E, Reiss M E, Seibles L, Hartnett T M, Miller R P , Robinson C J. Phys Rev, 1994; 50B: 3702
[3] Chen H, Guo L W, Cui Q, Hu Q, Huang Q, Zhou J M. J Appl Phys, 1996; 79: 1167
[4] Rahman M M, Zhang S Q, Tambo T, Tatsuyama C. Jpn J Appl Phys, Part 1, 2005; 44: 2967
[5] Lee S W, Chen H C, Chen L J, Peng Y H, Kuan C H , Cheng H H. J Appl Phys, 2002; 92: 6880
[6] Stach E A, Hull R, Bean J C, Jones K S, Nejim A. Microsc Microanal, 1998; 4: 294
[7] Hull R, Stach E A, Tromp R, Ross F, Reuter M. Phys Status Solidi, 1999; 171A: 133
[8] Ueno T, Irisawa T , Shiraki Y. J Cryst Growth, 2001; 227: 761
[9] Szeles C, Asoka–Kumar P, Lynn K G. Appl Phys Lett, 1995; 66: 2855
[10] Duesbery M S, Richardson G Y. Crit Rev Solid State Mater Sci, 1991; 17: 1
[11] Blumenau A T, Jones R, Frauenheim T, Willems B, Lebe-dev O I, Tendeloo G V, Fisher D, Martineau P M. Phys Rev, 2003; 68B: 014115
[12] Hirth J P, Lothe J. Theory of Dislocation. 2nd Ed., New York: Wiley, 1982: 59, 73, 532
[13] Gottschalk H, Hiller N, Sauerl S, Specht P, Alexander H. Phys Status Solidi, 1993; 138A: 547
[14] Bulatov V V, Yip S, Argon A S. Philos Mag, 1995; 72A: 453
[15] Wang C Y, Meng Q Y, Zhong K Y, Yang Z F. Phys Rev, 2008; 77B: 205209
[16] Justo J F, de Koning M, Cai W, Bulatov V V. Phys Rev Lett, 2000; 84: 2172
[17] Justo J F, de Koning M, Cai W, Bulatov V V. Mater Sci Eng, 2001; A309: 129
[18] de Ara´ujo M M, Justo J F, Nunes R W. Appl Phys Lett, 2007; 90: 222106
[19] Li C Y, Meng Q Y, Zhong K Y, Wang C Y. Phys Rev, 2008; 77B: 045211
[20] Stillinger F H, Weber T A. Phys Rev, 1985; 31B: 5262
[21] Justo J F, Bazant M Z, Efthimios K, Bulatov V V, Yip S. Phys Rev, 1998; 58B: 2539
[22] NastarM, Bulatov V V, Yip S. Phys Rev, 1995; 53B: 13521
[23] Parrinello M, Rahman A. J Appl Phys, 1981; 52: 7182
[24] Chang J P, Cai W, Bulatov V V, Yip S. Comput Mater Sci, 2002; 23: 111
[25] Chadi D J, Chang K J. Phys Rev, 1998; 38B: 1523

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[7] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[8] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[9] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[11] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[12] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[13] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[14] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!