Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 331-337    DOI:
论文 Current Issue | Archive | Adv Search |
MODIFICATION OF ZENER'S TWO--PARAMETER IN THE SUPERELEMENT MODEL FOR Fe--Σ Xi--C ALLOY SYSTEMS
PENG Ningqi1;2;TANG Guangbo2;LIU Zhengdong2;WU Xiuyue1;2  
1 Key Laboratory of Advanced Materials of Yunnan Province; Kunming University of Science and Technology; Kunming 650093
2 Institute for Structural Materials; Central Iron and Steel Research Institute; Beijing 100081
Cite this article: 

PENG Ningqi TANG Guangbo LIU Zhengdong WU Xiuyue. MODIFICATION OF ZENER'S TWO--PARAMETER IN THE SUPERELEMENT MODEL FOR Fe--Σ Xi--C ALLOY SYSTEMS. Acta Metall Sin, 2009, 45(3): 331-337.

Download:  PDF(1101KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

On the basis of experimental value of Ae3, a modified superelement model has been developed by the modification of Zener's two--parameter for substitutional elements, such as Si, Mn, Ni, Co, Mo, Al, Cu and Cr, according to Aaronson's method of superelement model, in which the interactions between alloying elements have been taken into account. The prediction accuracy of the modified model has been greatly improved in comparison with the existing superelement models. The standard deviations between the Ae3 value calculated by the modified superelement model and measured Ae3, and Thermo--Calc calculated Ae3, are 10.8 and 2.35 ℃, respectively. The standard deviation between the experimental Ae1 and the Ae1 calculated by the superelement model with new Zener's two--parameter is 6.8 ℃. In accordance with the thermodynamics calculation approach of the transformation from austenite to martensite, the martensite start temperature, Ms, has also been calculated with the modified parameters, and the standard deviation between the experimental and calculated Ms values is 25.3 ℃.

Key words:  phase transformation      thermodynamics      superelement model      equilibrium transformation temperature     
Received:  18 August 2008     
ZTFLH: 

TG111.5

 
Fund: 

Supported by Project of Scientific and Technical Supporting Program of China during the 11th Five--Year Plan (Nos.{\footnotesize\it 2006BAE03A08} and 2006BAE03A04)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/331

[1] Miettinen J. Calphad, 1998; 22: 231
[2] Zhu H T. Report of Postdoctoral Research, Shanghai JiaoTong University, 2002
(朱洪涛. 上海交通大学博士后报告. 2002)

[3] Chou K C, Chang Y A. Ber Bunsen–Ges Phys Chem, 1989; 93: 741
[4] Bichara C, Bergman C, Mathieu J C. Acta Metall, 1985; 33: 91
[5] Hashiguchi K, Kirkaldy J S, Fukuzumi P, Pavaskar V. Calphad, 1984; 8: 173
[6] Chang H B, Hsu T Y (Xu Z Y). Acta Metall, 1986; 34: 333
[7] Qu J B, Liu Z Y, Liu X H,Wang G D. Mater Sci Technol, 1998; 14: 380.
[8] Bhadeshia H K. Met Sci, 1981; 15: 178
[9] Zhang B, Zhang H B, Ruan X Y. J Shanghai JiaoTong Univ, 2003; 37: 10
(张斌, 张鸿冰, 阮雪榆. 上海交通大学学报, 2003; 37: 10)

[10] Liu Z Y, Xu Y B, Wang G D. Simulation and Prediction of the Evolution of Microstructure and Properties of Hot Rolled Steels. Shenyang: Northeastem University, 2004: 34
(刘振宇, 许云波, 王国栋. 热轧钢材组织-性能演变的模拟和预测. 沈阳: 东北大学出版社, 2004: 34)

[11] Aaronson H I, Domain H A, Pound G M. Trans Metall Soc AIME, 1966; 236: 768
[12] Zener C. Trans AIME, 1955; 203: 619
[13] Kaufman L, Clougherty E X,Weiss R J. Acta Metall, 1963; 11: 323
[14] Orr R L, Chipman J. Trans Metall Soc AIME, 1967; 239: 630
[15] Mogumov B M, Tomilin I A, ShvarsmanL A. Thermodynamics of Fe–C Alloys. Moscow: Metallurgy Press, 1972: 110
[16] Hsu T Y (Xu Z Y), Zhang H B, Luo S F. Acta Metall Sin, 1984; 32: 343
(徐祖耀, 张鸿冰, 罗守福. 金属学报, 1984; 32: 343)
[17] Hsu T Y. Materials Thermodynamics. Beijing: Science Press, 2005: 204
(徐祖耀. 材料热力学. 北京: 科学出版社, 2005: 204)

[18] Mou Y W, Hsu T Y(Xu Z Y). Acta Metall, 1986; 34: 325
[19] Mou Y W, Hsu T Y(Xu Z Y). Acta Metall Sin, 1987; 23: 329
(牟翊文, 徐祖耀. 金属学报. 1987; 23: 329 )
[20] Hsu T Y. Martensite Transformation and Martensite. Beijing: Science Press, 1980: 53
(徐祖耀. 马氏体和马氏体相变. 北京: 科学出版社, 1980: 53)
[21] Wray P J. Metall Trans, 1982; 13A: 125
[22] Dai Q X, Cheng X N, Yang Z Z. Mater Charact, 2004; 52: 349
[23] Byun T S. Acta Mater, 2003; 51: 3063
[24] Cheng X N, Dai Q X. Design and Control for Austenitic Steels. Beijing: Defense Industry Press, 2005: 37
(程晓农, 戴起勋. 奥氏体钢设计与控制. 北京: 国防工业出版社, 2005: 37)

[25] Xie J P, Li Q C, He Z M, Chen Q D. J Luoyang Inst Technol, 1997; 18(2): 6
(谢敬佩, 李庆春, 何镇明, 陈全德. 洛阳工学院学报, 1997; 18(2): 6)

[26] Central Iron and Steel Research Institute of Ministry of Metallurgical Industry. The Atlas of Super–Cooling Austenite Transformation Diagrams. Beijing: Metallurgical
Industry Press, 1979: 1
(冶金工业部钢铁研究总院. 钢的过冷奥氏体转变曲线图集. 北京: 冶金工业出版社, 1979: 1)

[27] Li M Y, Sun B R. Steel Technical Manual on Rolling Control and Control of Cooling. Beijing: Metallurgical Industry Press, 1989: 124
(李曼云, 孙本荣. 钢的控制轧制和控制冷却技术手册. 北京: 冶金工业出版社, 1989: 124)

[28] The No.1 Iron Factory, Benxi Iron and Steel Corporation, Tsinghua University. The Atlas of Super–Cooling Austenite Transformation Diagrams. Benxi: The No.1 Iron Factory Press, Benxi Iron and Steel Corporation, 1978: 1
(本溪钢铁公司第一炼钢厂, 清华大学机械系金属材料教研组. 钢的过冷奥氏体转变曲线. 本溪: 本溪钢铁公司
第一炼钢厂, 1978: 1)

[29] Zhang S Z. Atlas of Super–Cooling Austenite Transformation Diagrams. Beijing: Metallurgical Industry Press, 1993: 22
(张世中. 钢的过冷奥氏体转变曲线图集. 北京: 冶金工业出版社, 1993: 22)

[30] Harbin Research Institute of Welding of Ministry of Machine Building and Electronics Industry. CCT Atlas of Welding of Low Alloy Steels. Beijing: China Machine Press, 1990: 3
(机械电子工业部哈尔滨焊接研究所. 国产低合金钢焊接CCT图册. 北京: 机械工业出版社, 1990: 3)

[31] Japan Society for Irons & Steels. Atlas of Continuous Cooling Transformation Diagrams of Low Carbon Steels. Tokyo: Japan Society for Irons and Steels Press, 1992: 32
(日本钢铁学会. 低碳钢连续冷却转变图集. 东京: 日本钢铁学会出版社, 1992: 32)

[32] American Society for Metals. Atlas of Isothermal Transformation and Cooling Transformation Diagrams. Metals Park, Ohio: American Society for Metals Press, 1977: 1
[33] Breedies J F. Trans Metall Soc AIME, 1964; 230: 1583
[34] Aaronson H I, Domain H A. Trans Metall Soc AIME, 1966, 236: 781
[35] Walters F M, Wells C. Trans Metall Soc AIME, 1936; 24: 359
[36] Hansen M. Constitution of Binary Alloys. New York: McGraw–Hill, 1958: 960
[37] Kriz A, Poboril F. Int Iron Steel Inst, 1932; 126: 323
[38] You W, Bai B Z, Fang H S, Xie X S. Acta Metall Sin, 2004; 40: 1133
(由伟, 白秉哲, 方鸿生, 谢锡善. 金属学报, 2004; 40: 1133)

[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[6] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[8] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[9] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[10] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[13] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[14] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[15] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
No Suggested Reading articles found!