Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 338-344    DOI:
论文 Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF THE HOT--DIP GALVANIZED STEEL SHEET UNDER ADHESION OF AN ALKALINE MUD IN HOT--HUMID ENVIRONMENTS
ZHANG Hong1;QI Huibin2;DU Cuiwei1; LI Xiaogang1
1 Corrosion and Protection Center; University of Science and Technology Beijing; Beijing 100083
2 Institute of Welding and Surface Technology; Baoshan Iron and Steel Co.; Ltd.; Shanghai 201900
Cite this article: 

ZHANG Hong QI Huibin DU Cuiwei LI Xiaogang. CORROSION BEHAVIOR OF THE HOT--DIP GALVANIZED STEEL SHEET UNDER ADHESION OF AN ALKALINE MUD IN HOT--HUMID ENVIRONMENTS. Acta Metall Sin, 2009, 45(3): 338-344.

Download:  PDF(1460KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corroded behavior of the hot--dip galvanized (HDG) steel sheet used in automobile under mud adhesion was investigated by the hot and humid corrosion test. The corrosion products were observed and analyzed by means of SEM and XRD. The results show that the corrosion process of the HDG steel sheet with the mud adhesion could be divided into two steps, i.e., the formation of white rust due to corrosion of the zinc coating and the formation of red--black rust due to corrosion of the steel substrate. The content of γ--FeOOH in the corrosion products of the substrate is higher than others and the aggregation of Cl- ions in the mud accelerates the failure of the protection of the rust layer. The corrosion mass--loss increases continually with time but the corrosion mass--loss rate decreases correspondingly. The corrosion mass--loss rate at the higher temperature increases suddenly after a period of exposing time because the high temperature accelerates the interface reactions. In the corrosion process, there is a jump in the corrosion potential from a lower to a higher value, corresponding to the corrosion process of the zinc coating and the steel substrate, respectively. The potential jump will become earlier with temperature increasing.

Key words:  hot--dip galvanized steel sheet      alkaline mud      corrosion in hot and humid environments      rust layer     
Received:  10 September 2008     
ZTFLH: 

TG172.4

 
Fund: 

Supported by National Natural Science Foundation of China (No.50571022) and National Program on Environment Building for S&T Industries Project, Ministry of Science and Technology of China (No.2005DKA10400)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/338

[1] Zhang X G. Corros Prot, 2006; 27: 41
(章小鸽. 腐蚀与防护, 2006; 27: 41)

[2] Neufeld A K, Cole I S, Bond A M, Furman S A. Corros Sci, 2002; 44: 555
[3] Odnevall W, Leygraf C. Corros Sci, 2001; 43: 809
[4] Zhang X G. Corrosion, 2000; 56: 139
[5] Bernard MC, Hugot–le–Goff A, Thierry D, Massinon D, Philipps N. Corros Sci, 1993; 35: 1339
[6] Colomban Ph, Cherifi S, Despert G. J Raman Spectrosc, 2008; 39: 881
[7] Yadav A P, Katayama H, Noda K, Masuda H, Nishikata A, Tsuru T. Corros Sci, 2007; 49: 3716
[8] Xiao Z A, Fei X M, Zou Y J. Mater Prot, 2005; 29: 38
(肖作安, 费锡明, 邹勇进.材料保护, 2005; 29: 38)

[9] Gil M L A, Santos A, Bethencourt M, Garcia T, Fernandez–Bastero S, Velo A, Gago–Duport L. Anal Chim Acta, 2003; 494: 245
[10] Ouyang W Z, Xu C C. Corros Sci Prot Technol, 2005; 17: 425
(欧阳维真, 许淳淳. 腐蚀科学与防护技术, 2005; 17: 425)

[11] Evans U R, Taylor C A J. Corros Sci, 1972; 12: 227
[12] Liang Y J. Physical Chemistry. 2nd Ed., Beijing: Metallurgical Industry Press, 1989: 252
(梁英教. 物理化学. 第2版, 北京: 冶金工业出版社, 1989: 252)
[13] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y QvActa Metall Sin, 2003; 39: 848
(陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2003; 39: 848)

[14] Dong J, Dong J H, Han E H, Liu C M, KeW. Corros Sci Prot Technol, 2006; 18: 414
(董杰, 董俊华, 韩恩厚, 刘春明, 柯伟. 腐蚀科学与防护技术, 2006; 18: 414)

[1] CHEN Wenjuan, HAO Long, DONG Junhua, KE Wei, WEN Huailiang. EFFECT OF pH VALUE ON THE CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL-INDUSTRIAL ATMOSPHERES[J]. 金属学报, 2015, 51(2): 191-200.
[2] PENG Xin WANG Jia SHAN Chuan WANG Haijie LIU Zaijian ZOU Yan. CORROSION BEHAVIOR OF LONG–TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER[J]. 金属学报, 2012, 48(10): 1260-1266.
[3] LIU Jie LI Xiangbo WANG Jia. EFFECT OF HYDROSTATIC PRESSURE ON THE CORROSION BEHAVIORS OF TWO LOW ALLOY STEELS[J]. 金属学报, 2011, 47(6): 697-705.
[4] CAO Guoliang LI Guoming CHEN Shan CHANG Wanshun CHEN Xuequn. STUDY ON RUST LAYERS AND PITTING CORROSION RESISTANCE OF Ni-Cu-P STEEL EXPOSED IN MARINE SPLASH ZONE[J]. 金属学报, 2011, 47(2): 145-151.
[5] CAO Guoliang LI Guoming CHEN Shan CHANG Wanshun CHEN Xuequn. COMPARISON ON PITTING CORROSION RESISTANCE OF NICKEL AND CHROMIUM IN TYPICAL SEA WATER RESISTANCE STEELS[J]. 金属学报, 2010, 46(6): 748-754.
[6] ZOU Yan ZHENG Yingying WANG Yanhua WANG Jia. CATHODIC ELECTROCHEMICAL BEHAVIORS OF MILD STEEL IN SEAWATER[J]. 金属学报, 2010, 46(1): 123-128.
[7] CUI Lei YANG Shanwu WANG Shutao GAO Kewei HE Xinlai. EFFECT OF DAMNIFICATION IN RUST LAYER ON CORROSION BEHAVIORS OF LOWCARBON BAINITIC STEEL IN THE ENVIRONMENT CONTAINING Cl[J]. 金属学报, 2009, 45(4): 442-449.
No Suggested Reading articles found!