Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (11): 1372-1377     DOI:
论文 Current Issue | Archive | Adv Search |
The electrochemical study of corrosion resistance of silane-based hybrid films doped with rare earth salt on aluminum alloy
ZHANG Jin-Tao
常州工学院理学院
Cite this article: 

ZHANG Jin-Tao. The electrochemical study of corrosion resistance of silane-based hybrid films doped with rare earth salt on aluminum alloy. Acta Metall Sin, 2008, 44(11): 1372-1377 .

Download:  PDF(845KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the present work, silane-based organic-inorganic hybrid films doped with rare earth salt (cerium nitrate) were prepared by sol-gel method using γ-glycidoxypropyltrimethoxysilane (γ-GPTMS) and tetraethoxysilane (TEOS) precursors on 2A12 aluminum alloys. The electrochemical tests (such as polarization curve and electrochemical impedance spectroscopy (EIS)) were preformed to investigate the preparing process of Ce-doped organic-inorganic hybrid films (including the concentration of cerium salt doped in films and curing temperature of coatings) and characterize the performances of corrosion protection of the coatings for 2A12 aluminum alloys. At the same time, the corrosion resistance of Ce-doped coatings was compared with non-doped silane-based hybrid films, chromate conversion coating and rare earth conversion coating. The results of polarization curve tests indicated that the polarization resistance value of Ce-doped silane-based hybrid films increased by more than one order of magnitude compared with that measured for non-doped coating, and much greater than those of chromate and rare earth conversion coatings. EIS measurements gave the results in good agreement with those obtained from polarization curves, suggesting that silane-based hybrid process present promising potentialities as alternative method of chromating by improving the preparing technology of these films.

Key words:  Rare earth      Organic-inorganic hybrid films      Aluminum alloy      Polarization curve      Electrochemical impedanc     
Received:  10 April 2008     
ZTFLH: 

TG174.36

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I11/1372

[1]Yu X W,Cao C N,Yao Z M,Zhou D R,Yin Z D.Mater Sci Eng,2000;A284:56
[2]Montemor M F,Simoes A M,Ferreira M G S.Prog Org Coat,2001;43:274
[3]Rivera B F,Johnson B Y,O' Keefe M J,Fahrenholtz W G.Surf Coat Technol,2004;176:349
[4]Zhu L P,Lu C,Xiong R Z.Ordnance Mater Sci Eng,2007; 30(5):60 (朱利萍,鲁闯,熊仁章.兵器材料科学与工程,2007;30(5):60)
[5]Guo C,Shi T,Zuo Y,Zhao J M,Xiong J P.Electroplat Finish,2006;25(9):44 (郭超,石铁,左禹,赵景茂,熊金平.电镀与涂饰,2006;25(9):44)
[6]Wang C,Jiang F.Electroplat Pollut Control,2001;21(5): 16 (王成,江峰.电镀与环保,2001;21(5):16)
[7]Wang C,Jiang F,Lin H C.Rare Met Mater Eng,2003; 32:130 (王成,江峰,林海潮.稀有金属材料与工程,2003;32:130)
[8]Tang J L,Tang Y M,Zuo Y.Mater Prot,2006;39(11):27 (唐鋆磊,唐聿明,左禹.材料保护,2006;39(11):27)
[9]Subramanian V,van Ooij W J.Surf Eng,1999;15:168
[10]Tang N,van Ooij W J,Gorecki G.Prog Org Coat,1997; 30:255
[11]Sundararajan G P,van Ooij W J.Surf Eng,2000;16:315
[12]Zhu D Q,van Ooij W J.Prog Org Coat,2004;49:42
[13]Zhu D Q,van Ooij W J.Electrochim Acta,2004;49:1113
[14]van Ooij W J,Zhu D Q,Prasad G,Jayaseelan S,Fu Y, Teredesai N.Surf Eng,2000;16:386
[15]Chou T P,Chandrasekaran C,Limmer S J,Seraji S,Wu Y,Forbess M J,Nguyen C,Cao G Z.J Non-Cryst Solids, 2001;290:153
[16]Metroke T L,Gandhi J S,Apblett A.Prog Org Coat,2004; 50:231
[17]Metroke T L,Kachurina O,Knobbe E T.Prog Org Coat, 2002;44:185
[18]Metroke T L,Apblett A.Prog Org Coat,2004;51:36
[19]Wang Y H,Zhao J M,Zuo Y.Corros Prot,2005;26:432 (王禹慧,赵景茂,左禹.腐蚀与防护,2005;26:432)
[20]Cao J Y.The Technology and Application of Un-coated Surfaces Pretreatment.Beijing:Chemical Industry Press, 2004:242 (曹京宜.涂装表面预处理技术与应用.北京:化学工业出版社,2004:242)
[21]Hu J M,Liu L,Zhang J T,Zhang J Q,Coo C N.Acta Metall Sin,2004;40:1189 (胡吉明,刘惊,张金涛,张鉴清,曹楚南.金属学报,2004;40:1189)
[22]Leggat R B,Taylor S A,Taylor S R.Colloids Surf,2002; 210A:83
[23]Montemor M F,Rosqvist A,Fagerholm H,Ferreira M G S.Prog Org Coat,2004;51:188
[24]Li Y S,Wright P B,Puritt R,Tran T.Spectrochim Acta, 2004;60A:2759
[25]Song X L,Jiang N,Qu P,He X,Yang H P,Qiu G Z.Chi J Nonferrous Met,2006;16:2126
(宋晓岚,江楠,曲鹏,何希,杨海平,邱冠周.中国有色金属学报,2006;16:2126)
[26]Hu Z.Inorg Chem Ind,2007;39:21 (胡震.无机盐工业,2007;39:21)
[27]Cao C N,Zhang J Q.An Introduction to Electrochemi- cal Impedance Spectroscopy.Beijing:Science Press,2002: 156 (曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002:156)
[28]Trabelsi W,Triki E,Dhouibi L,Ferreira M G S,Zheludke- vich M L,Montemor M F.Surf Coat Technol,2006;200: 4240
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[5] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[6] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[7] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[8] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[9] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[10] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[11] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[12] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[13] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[14] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[15] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
No Suggested Reading articles found!