Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (11): 1378-1383     DOI:
论文 Current Issue | Archive | Adv Search |
Constitutive Relationship of Hot Deformation of AZ91 Magnesium Alloy
;;
北京科技大学
Cite this article: 

. Constitutive Relationship of Hot Deformation of AZ91 Magnesium Alloy. Acta Metall Sin, 2008, 44(11): 1378-1383 .

Download:  PDF(835KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hot compression deformation of AZ91 magnesium alloy has been performed on Gleeble-1500 under conditions of strain rates of 0.001~1s-1 and deformation temperatures of 250~400℃,the flow stresses in different deformation conditions are investigated. The results show that the flow stress is significantly affected by both deformation temperature and strain rate,the flow stress decreases with the deformation temperature increasing and strain rate decreasing. The relations of the deformation activation energy and stress exponent with strain are obtained using the hyperbolic-sine mathematics model,and the hot deformation constitutive relationship being established. Comparing with experimental results,it is proved that the model reflects the real feature of the deformation of AZ91 alloy.

Key words:  magnesium alloy      constitutive relationship      hot deformation      deformation activation energy     
Received:  26 March 2008     
ZTFLH: 

TG146.2

 
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I11/1378

[1]Mordike B L,Ebert T.Mater Sci Eng,2001;A302:37
[2]Friedrich H,Schumann S.J Mater Process Technol,2001; 117:276
[3]Matucha K H.In:Cahn R W,Hassen P,Kramer E J, eds.;translated by Ding D Y,et al.,Materials Science and Technology:A Comprehensive Treatment,Vol.8:Struc- ture and Properties of Nonferrous Alloys.Beijing:Science Press,1999:105 (Matucha K H.见:Cahn R W,Hassen P,Kramer E J,主编;丁道云,等,译.材料科学与技术丛书,第8卷:非铁合金的结构与性能.北京:科学出版社,1999:105)
[4]Takuda H,Fujimoto H,Hatta N.J Mater Process Technol, 1998;80-81:513
[5]Wang L Y,Fan Y G,Huang G J,Huang Y S.Trans Non- ferrous Met Soc China,2003;13:335
[6]Galiyev A,Kaibyshev R,Gottstein G.Acta Mater,2001; 49:1199
[7]Guo Q,Yan H G,Chen Z H,Zhang H.Chin J Nonferrous Met,2005;15:900 (郭强,严红革,陈振华,张辉.中国有色金属学报,2005;15:900)
[8]Mwembela A,Konopleva E B,Mcqueen H J.Scr Mater, 1997;37:1789
[9]Galiyev A,Kaibyshev R,Sakai T.Mater Sci Forum,2003; 419-422:509
[10]Tan J C,Tan M J.Mater Sci Eng,2003;A339:124
[11]Poirier J P;translated by Guan D L.Plastic Deforma- tion of Crystal at Elevated Temperature.Dalian:Dalian university of Technology Press,1989:56 (Poirier J P,著;关德林,译.晶体的高温塑性变形.大连:大连理工大学出版社,1989:56)
[12]Mcqueen H J,Ryan N D.Mater Sci Eng,2002;A322:43
[13]Gronostajski Z J.J Mater Process Technol,1998;78:84
[14]Imbert C A C,Mcqueen H J.Mater Sci Eng,2001;A313: 88
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[7] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[8] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[9] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[10] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[11] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[12] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[13] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[14] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[15] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
No Suggested Reading articles found!