Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (5): 631-635     DOI:
Research Articles Current Issue | Archive | Adv Search |
COHERENT GROWTH OF α-W FILM ON Si WAFER AND ITS THICKNESS DEPENDENT MECHANICAL AND ELECTRICAL PROPERTIES
Mingxia Liu;Yongfeng Hu;FEI MA;Kewei XU
西安交通大学金属材料强度国家重点实验室
Cite this article: 

Mingxia Liu; Yongfeng Hu; FEI MA; Kewei XU. COHERENT GROWTH OF α-W FILM ON Si WAFER AND ITS THICKNESS DEPENDENT MECHANICAL AND ELECTRICAL PROPERTIES. Acta Metall Sin, 2008, 44(5): 631-635 .

Download:  PDF(1732KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By means of template effect α-W thin films were successfully coherent grown on pre-deposited Mo seed-layer on Si substrates at ambient temperature by magnetron sputtering. Microstructures have been studied by X-ray diffraction, field-emission scanning electron microscopy and high-resolution transmission electron microscopy techniques. Residual stress and electric resistance of thin films were investigated by wafer curvature method and standard four-probe technique. Observations show stable α-W in equiaxial-grain shape is preferred on Mo layer driven by template effect while metastable β-W with non-equiaxed grain structure appears to form on Si substrates. With increasing tungsten film thickness, resistivity and residual stress increase for above two series of samples. For the case of β-W, the thickness dependent properties indeed resulted from increasing grain boundary. Whereas, for α-W case, the constraint of coherent interface between α-W and Mo will dominate electric resistance and residual compressive stress, especially at film thicknesses equal to or smaller than tens of nanometers.
Key words:  tungsten      template effect      size effect      residual stress      electric resistance      
Received:  15 October 2007     
ZTFLH:  O484  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I5/631

[1]Samanta S K,Yoo W J,Samudra G,Tok E S,Bera L K, Balasubramanian N.Appl Phys Lett,2005;87:113110
[2]Shen Y G,Mai Y W,McBride W E,McKenzie D R,Zhang Q C.Appl Phys Lett,1999;75:2211
[3]Haghiri-Gosnet A M,Ladan F R,Mayeux C,Launois H. J Vac Sci Technol,1989;7A:2663
[4]Rossnagel S M,Noyan I C,Cabral C.J Vac Sci Technol, 2002;20B:2047
[5]Kuroda R,Liu Z X,Fukuzawa Y.Suzuki Y,Osamura M, Wang S N,Naotaka O,Teruhisa O,Takahiro M,Yasushi H,Yasuhiko N,Hisao T,Yunosuke M.Thin Solid Films, 2004;461:34
[6]Sadowski J T,Nagao T,Yaginuma S,Fujikawa Y,Al- Mahboob A,Nakajima K,Sakurai T,Thayer G E,Tromp R M.Appl Phys Lett,2005;86:073109
[7]Tu J P,Jiang C X,Guo S Y,Fu M F.Mater Lett,2004; 58:1646
[8]Badawi K F,Villain P,Goudeau P,Renault P O.Appl Phys Lett,2002;80:4705
[9]Villain P,Goudeau P,Renault P O,Badawi K F.Appl Phys Lett,2002;81:4365
[10]Kim H K,Huh S H,Park J W,Jeong J W,Lee G H.Chem Phys Lett,2002;354:165
[11]Villain P,Beauchamp P,Badawi K F,Goudeau P,Renault P O.Scr Mater,2004;50:1247
[12]Stoney G G.Proc R Soc London,1909;82A:172
[13]Zhang J M,Xu K W.Acta Phys Sin,2004;53:176 (张建民,徐可为.物理学报,2004;53:176)
[14]Janssen G C A M,Dammers A J,Sivel V G M,Wang W R.Appl Phys Lett,2003;83:3287
[15]Misra A,Kung H,Mitchell T E,Nastasi M.J Mater Res, 2000;15:756
[16]Doljack F A,Hoffman R W.Thin Solid Films,1972;11: 71
[17]Naoki W,Kazuo S,Nobuyasu M.Appl Phys Lett,2004; 85:1199
[18]Hu S Y,Chen L Q.Acta Mater,2004;52:3069
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[4] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[5] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[9] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[10] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[11] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
[12] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[13] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[14] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[15] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
No Suggested Reading articles found!