Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (11): 1191-1194     DOI:
Research Articles Current Issue | Archive | Adv Search |
Mathematical Model on Steel Strip--Feeding of Mold in Continuous Casting Process
LI Weibiao; WANG Fang; QI Fengsheng; LI Baokuan
School of Materials & Metallurgy; Northeastern University
Cite this article: 

LI Weibiao; WANG Fang; QI Fengsheng; LI Baokuan. Mathematical Model on Steel Strip--Feeding of Mold in Continuous Casting Process. Acta Metall Sin, 2007, 43(11): 1191-1194 .

Download:  PDF(892KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A mathematical model for feeding strip steel process has been developed using energy conservation principle on traveling thin-cell and introduction of relative steel strip feeding speed. Model equations are solved by using the finite volume method, and computer code is made out by Visual basic language. The numerical simulation is carried out on a typical feeding steel strip in continuous casting mold. The temperature distribution of continuous casting strand and solidification state curve of feeding strip steel are obtained. Conventional temperature field and solidification behavior from surface to interior of strand are changed by a feeding strip steel process. Strip steel in mold firstly solidifies and then melts again, the superheat of molten steel and temperature gradient of strand decrease. These are beneficial for formation of equiaxed dendrite in strand. At the some time, some parametric studies such as size of feeding strip steel, casting speed and superheat are also conducted, a theoretical base is built for the industrialization of the feeding strip steel in mold.
Key words:  steel strip feeding      continuous casting      mold      solidification      mathematical model      
Received:  18 June 2007     
ZTFLH:  TF777  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I11/1191

[1]Park J K,Thomas B G,Samarasekera I V,Yoon U S. Metall Mater Trans,2002;33B:437
[2]Park J K,Thomas B G,Samarasekera I V.Ironmaking Steelmaking,2002;29:359
[3]Li C S,Thomas B G.Metall Mater Trans,2004;35B:1151
[4]Savage J,Pritchard W H.J Iron Steel Inst London,1954; 179:269
[5]Thomas B G,Mika L J,Najjar F M.Metall Trans,1990; 21B:387
[6]Marcial G,Marcela B.Metall Mater Trans,2003;34B: 455
[7]Thomas B G,Langenechert M,Castella L.Ironmaking Steelmaking,2003;30:235
[8]Eugene A M.TMS-AIME,1967;239:1747
[9]Marcial G,Marcela B G ,Andrea P.Metall Mater Trans, 2003;34B:455
[10]Sengupta J,Thomas B G,Wewlls M A.Metall Mater Trans,2005;36A:187
[11]Li H S,Thomas B G.Metall Mater Trans,2004;35B:1151=
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[4] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[5] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[7] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[11] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[12] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[13] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[14] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[15] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
No Suggested Reading articles found!