Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (6): 603-606     DOI:
Research Articles Current Issue | Archive | Adv Search |
Cite this article: 

. . Acta Metall Sin, 2007, 43(6): 603-606 .

Download:  PDF(207KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ni/Al nanomutlialyers with different modulated periods were prepared using multi-target magnetron sputtering method. The microstructure of nanomultialyers was studied by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The continuous stiffness mode (CSM) was employed to measure the effect of loading depth on the determination of hardness of thin films by means of nanoindentation. The results reveal that crystalline was strengthened with the increasing modulated period, L. And the superhardness phenomenon was observed for Ni/Al multilayers. Interestingly, for the multilayer with L more than 30 nm, depth-dependent hardness increased with the enhanced loading depth. However, the highest-depth hardness shows the lowest value for the Ni/Al multilayer with modulated period less than 30 nm. This tendency indicates the depth-sensing hardness for nanomultilayer by nanoindentation and this result is attributed to the competitive effects of modulated period and grain boundary.
Key words:  multilayer      hardness      loading depth      modulated period      grain boundary      
Received:  10 October 2006     
ZTFLH:  TB43  
  O346.3  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I6/603

[1]Amar G J.Phys Rev Lett,1990;64:543
[2]Saha.R,Nix W D.Acta Mater,2002;50:23
[3]Saha.R,Nix W D.Mater Sci Eng,2001;A319:898
[4]Lilleodden E T,Nix W D.Acta Mater,2006;54:1583
[5]Choi Y,Vliet K J V,Li J,Suresh S.J Appl Phys,2003; 94:6050
[6]Cheng Y T,Cheng C M.Mater Sci Eng,2004;R44:91
[7]Shan Z W,Stach E A,Wiezorek J M K,Knapp J A, Follstaedt D M,Mao S X.Science,2004;305:654
[8]Chen M W,Ma E,Hemker K J,Sheng H W,Wang Y M, Cheng X M.Science,2003;300:1275
[9]Schiφtz J,Tolla F D D,Jacobsen K W.Nature,1998;391: 561
[10]Marvina L A,Marvin V B.Tech Phys,1997;42:49
[11]Xu J H,Yu L H,Azuma Y,Fujimoto T,Umehara H, Kojima I.Appl Phys Lett,2002;81:4139
[12]Koehler J S.Phys Rev,1970;2B:547
[13]Chu X,Barnett S A.J Appl Phys,1995;77:4403
[14]Evers L,Brekelmans W,Geers M.Int J Solids Struct, 2004;41:5209
[15]Misra A,Verdier M,Lu Y C,Kung H,Mitchell T E,Nas- tasi M,Embury J D.Scr Mater,1998;39:555
[16]Nes E,Holmedal B,Evangelista E,Marthinsen K.Mater Sci Eng,2005;A410-411:178
[17]Marthinsen K,Nes E.Mater Sci Technol,2001;17:376
[18]Misra A,Hirth J P,Hoagland R G.Acta Mater,2005;53: 4817
[19]Hoagland R G,Kurtz R J,Henager C H.Scr Mater,2004; 50:775
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[10] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[12] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[13] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[14] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[15] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
No Suggested Reading articles found!