Please wait a minute...
Acta Metall Sin  2007, Vol. 42 Issue (1): 53-58     DOI:
Research Articles Current Issue | Archive | Adv Search |
FURTHER INVESTIGATION OF EFFECTS OF ATOMIC HYDROGEN AND FLAKES ON MECHANICAL PROPERTIES OF WHEEL STEEL
Xuechong Ren
北京科技大学材料科学与工程学院
Cite this article: 

Xuechong Ren. FURTHER INVESTIGATION OF EFFECTS OF ATOMIC HYDROGEN AND FLAKES ON MECHANICAL PROPERTIES OF WHEEL STEEL. Acta Metall Sin, 2007, 42(1): 53-58 .

Download:  PDF(966KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of hydrogen and flakes on impact toughness and fatigue properties of a wheel steel have been investigated. The results show that atomic hydrogen has no effect on impact toughness when the diffusible hydrogen concentration is low (C0≤0.7×10-6). The flakes decrease and fluctuate impact toughness. Atomic hydrogen has no effect on fatigue properties when the diffusible hydrogen concentration is low (C0≤0.7×10-6). But atomic hydrogen can promote the initiation of fatigue cracks and increase the fatigue crack growth rate when the hydrogen concentration is high enough (C0≥2.5×10-6). The flakes increase and undulate the fatigue crack growth rate.
Key words:  wheel steel      flake      atomic hydrogen      impact toughness      fatigue      
Received:  21 July 2006     
ZTFLH:  TB383  
  TG111.91  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V42/I1/53

[1]Ren X C,Chu W Y,Li J x,Qiao L J,Jiang B,Chen G, Cui Y H.Acta Metall Sin,2006;42:153 (任学冲,褚武扬,李金许,乔利杰,江波,陈刚,崔银会.金属学报,2006;42:153)
[2]Kelestemur M H,Chaki T K.Int J Fatigue,2001;23:169
[3]Oda Y,Noguchi H.Int J Fract,2005;132(2):99
[4]Barbangelo A.J Eng Mater Technol,1987;109:119
[5]Nong G,Yao W X,Cao Y z.Mater Charact,1992;28:15
[6]Wang G Z,Ren X C,Chen J H.Metall Mater Trans, 2004; 35:1765
[7] Griffith J R,Owen D R J.J Mech Phys Solids,197l;19: 419
[8]Ritchie R O,Knott J F,Rice J R. J Mech Phys Solids, 1973;21:395
[9] Chen J H,Wang Q,Wang G Z,Li Z. Acta Mater,2003; 51:1841
[10]Curry D A,Knott J F.Met Sci,1978;12:511
[11]Robertson I M.Eng Fract Mech,2001;68:671
[12]Neumann P.Acta Metall Mater,1990;38:1933
[13]Vinogardov A,Hashimoto S,Miura S.Acta Metall Mater, 1995;43:6750
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[13] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
No Suggested Reading articles found!