Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (5): 533-536     DOI:
Research Articles Current Issue | Archive | Adv Search |
INHIBITION MECHANISM OF STEARAMIDE DERIVATIVE ON THE CORROSION OF CO2
DU Haiyan
江西理工大学
Cite this article: 

DU Haiyan. INHIBITION MECHANISM OF STEARAMIDE DERIVATIVE ON THE CORROSION OF CO2. Acta Metall Sin, 2006, 42(5): 533-536 .

Download:  PDF(883KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Electrochemical studies were performed in aerated brine solution by electrochemical polarization measures and electrochemical impedance spectroscopy(EIS) measures. Experimental results revealed that stearamide derivative inhibitor acted as a good inhibitor for mild steel in aerated brine solution. The recorded electrochemical data showed that the corrosion resistance was greatly enhanced in the presence of stearamide derivative inhibitor. Polarization curves revealed that the inhibitor tested was an anodic type inhibitor and the inhibition efficiency increased with increasing concentrations to reach maximum at 0.5gL-1. Equivalent circuit of the investigated system was suggested.
Key words:  carbon dioxide corrosion      corrosion inhibitor      EIS      electrochemical polarization      
Received:  26 August 2005     
ZTFLH:  TG174  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I5/533

[1] Moiseeva L S. Prot Met, 2005; 41: 76
[2] Kermani M B, Morshed A. Corrosion, 2003; 59: 659
[3] Song P M, Kirk D W, Graydon J W. Corrosion, 2004; 60: 736
[4] Wu S L, Cui Z D, He F. Mater Lett, 2004; 58: 1076
[5] Durnie W, De Marco R, Kinsella B, Jefferson A, Pejcic B. J Electrochem Soc, 2005; 152B: 1
[6] Jiang X, Zheng Y G, Ke W. Corrosion, 2005; 61: 326
[7] Kuznetsov Y I, Andreev N N, Ibatullin K A. Prot Met, 2002; 38: 322
[8] Quraishi M A, Sharma H K. Indian J Chem Technol, 2005; 12(1): 98
[9] Ge H, Sun L X, Wang J. China Surf Deterg Cosmet, 2004; 34: 176 (葛虹,孙玲新,王军.日用化学工业,2004;34:176)
[10] Chang Z C. Surf Ind, 2000; (2): 5, 29 (常致成.表面活性剂工业,2000;(2):5,29)
[11] Cao C. Corns Sci, 1996; 38: 2073
[12] Tian Y J, Bailey S, Kinsella B. Corros Sci, 1996; 38: 1545
[13] Frignani A, Fonsati M, Monticelli C, Brunoro G. Corros Sci, 1999; 41: 1217
[14] Zhang D Q, Gao L X, Zhou G D. Corros Sci, 2004; 46: 3031
[15] Sastri V S. Corrosion, 2005; 61: 195
[16] Sapre K, Seal S, Jepson P. Corros Sci, 2003; 45: 59
[1] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[2] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[3] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[4] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[5] FU Xinxin, DONG Junhua, HAN En-hou, KE Wei. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT[J]. 金属学报, 2014, 50(1): 57-63.
[6] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[7] ZHOU Xiaowei,SHEN Yifu. CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION[J]. 金属学报, 2013, 49(9): 1121-1130.
[8] ZHAO Bo DU Cuiwei LIU Zhiyong LI Xiaogang YANG Jike LI Yueqiang. CORROSION BEHAVIOR OF X80 STEEL IN YINGTAN SOIL SIMULATED SOLUTION UNDER DISBONDED COATING[J]. 金属学报, 2012, 48(12): 1530-1536.
[9] BAI Yun LI Shujun HAO Yulin YANG Rui. ELECTROCHEMICAL CORROSION BEHAVIOR OF A NEW BIOMEDICAL Ti-24Nb-4Zr-8Sn ALLOY IN HANKS SOLUTION[J]. 金属学报, 2012, 48(1): 76-84.
[10] HUANG Fa WANG Jianqiu HAN En-Hou KE Wei. EFFECTS OF Cl- CONCENTRATION AND TEMPERATURE ON THE CORROSION BEHAVIOR OF ALLOY 690 IN BORATE BUFFER SOLUTION[J]. 金属学报, 2011, 47(7): 809-815.
[11] WANG Changgang DONG Junhua KE Wei CHEN Nan. EFFCTS OF pH AND Cl CONCENTRATION ON THE CORROSION BEHAVIOR OF COPPER IN BORIC ACID BUFFER SOLUTION[J]. 金属学报, 2011, 47(3): 354-360.
[12] ZHU Qingzhen XUE Wenbin LU Liang DU Jiancheng LIU Guanjun LI Wenfang. PREPARATION OF MICROARC OXIDATION COATING ON (Al2O3-SiO2)sf/AZ91D MAGNESIUM MATRIX COMPOSITE AND ITS ELECTROCHEMICAL IMPEDANCE SPECTROSCOPIC ANALYSIS\par[J]. 金属学报, 2011, 47(1): 74-80.
[13] YANG Bo LI Moucheng YAO Meiyi ZHOU Bangxin SHEN Jianian. IN SITU IMPEDANCE CHARACTERISTICS OF ZIRCONIUM ALLOY CORROSION IN HIGH TEMPERATURE AND PRESSURE WATER ENVIRONMENT[J]. 金属学报, 2010, 46(8): 946-950.
[14] ZOU Yan ZHENG Yingying WANG Yanhua WANG Jia. CATHODIC ELECTROCHEMICAL BEHAVIORS OF MILD STEEL IN SEAWATER[J]. 金属学报, 2010, 46(1): 123-128.
[15] YUAN Lei WANG Huaming. CORROSION BEHAVIORS OF Ni BASE SOLID SOLUTION-TOUGHENED Cr13Ni5Si2 ALLOY IN Cl- CONTAINING SOLUTIONS[J]. 金属学报, 2009, 45(11): 1384-1389.
No Suggested Reading articles found!