Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (8): 870-874     DOI:
Research Articles Current Issue | Archive | Adv Search |
The nanocrystalline structures of Fe-Ni-P-B alloy solidified at large undercooling and the liquid Spinonal decomposition of alloy melt
;
清华大学
Cite this article: 

;. The nanocrystalline structures of Fe-Ni-P-B alloy solidified at large undercooling and the liquid Spinonal decomposition of alloy melt. Acta Metall Sin, 2006, 42(8): 870-874 .

Download:  PDF(1559KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  It has been found that the undercooling of Fe40Ni40P14B6 alloy melt can be enhanced greatly by using fluxing purification technique. The results show that the solidification structures of the alloy at different undercooling are quite difference and the microstructure can be refined significantly by increasing the undercooling. When the undercooling is large enough, nanosize solidification structure can be obtained. In present work, at the undercooling of 360K, the as-prepared bulk nanocrystalline alloy possesses the average grain size of 40nm. It has been found that the alloy melt will experience Spinodal decomposition resulting in appearance of the network characteristics in solidification structure if the undercooling is large enough. The thermodynamics analysis results indicate that the characteristic sizes of the network structure resulted by Spinodal decomposition are close related to the undercooling of the alloy melt, the larger the undercooling, the smaller the grain size.
Key words:  fluxing technique      spinodal decomposition      undercooling      nano-structure      
Received:  22 November 2005     
ZTFLH:  TG111.2  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I8/870

[1]Long Y,Zhang Z Y,Li S W.New Functional Magnetic Material and Applications.Beijing:China Machine Press,1997:130 (龙毅,张正义,李守卫.新功能磁性材料及其应用.北京:机械工业出版社,1997:130)
[2]Kui H W,Greer A L,Turnbull D.Appl Phys Lett,1984;45:615
[3]Perepezko J H.Mater Sci Eng,1994;A179:52
[4]Herlach D M,Gao J,Holland-Moritz D,Volkmann T.Mater Sci Eng,2004;A375:9
[5]Norman A F,Greer A L.Mater Sci Forum,1995;179-180:707
[6]Hu H Q.Principles of Metal Solidification.2nd ed,Beijing:China Machine Press,2000:80 (胡汉起.金属凝固原理.第2版,北京:机械工业出版社,2000:80)
[7]Shen T D,Schwartz R B.Acta Mater,2001;49:837
[8]Cahn J W.TMS AIME,1968;242:166
[9]Guo W H,Chua C F,Leung C C,Kui H W.J Mater Res,2000;15:1605
[10]Luborsky F E.Amorphous Metallic and Alloys.London:Butterworth & Co (Publishers) Ltd.,1983:153
[11]Perepezko J H.Mater Sci Eng,1997;A226-228:374
[12]Laxmanan V.Acta Metall,1985;33:1475
[13]Xu Z,Zhao L C.Principles of Metallic Solid Transformation.Beijing:Science Press,2004:169 (徐洲,赵连城.金属固态相变原理.北京:科学出版社,2004:169)
[14]Lee K L,Kui H W.J Mater Res,1999;14:3653
[15]Hong S Y,Guo W H,Kui H W.J Mater Res,1999;14:3668
[16]Guo W H,Kui H W.Acta Mater,2000;48:2117
[17]Yuen C W,Lee K L,Kui H W.J Mater Res,1997;12:314
[18]Yuen C W,Kui H W.J Mater Res,1998;13:3034w
[1] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[2] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
[3] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
[4] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[5] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[6] Yun LI, Lianjie LIU, Xinming LI, Jinfu LI. Solidification of Undercooled Co75B25 Alloy[J]. 金属学报, 2018, 54(8): 1165-1170.
[7] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[8] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[9] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[10] Zengyun JIAN, Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG. Development of Solid-Liquid Interfacial Energyof Melt-Crystal[J]. 金属学报, 2018, 54(5): 766-772.
[11] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[12] Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. 金属学报, 2017, 53(8): 1011-1017.
[13] Jianglei ZHU, Qing WANG, Haipeng WANG. Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu[J]. 金属学报, 2017, 53(8): 1018-1024.
[14] Junhui YAN,Zengyun JIAN,Man ZHU,Fang'e CHANG,Junfeng XU. SOLIDIFICATION CHARACTERISTICS AND MICRO-STRUCTURE OF HIGH UNDERCOOLED Al-70%Si ALLOY[J]. 金属学报, 2016, 52(8): 931-937.
[15] WANG Xing, XI Wenjun, CUI Yue, LI Shujie. MICROSTRUCTURE EVOLUTION MECHANISM AND MECHANICAL PROPERTIES OF FeNiCrAl ALLOY REINFORCED BY COHERENT NiAl SYNTHE- SIZED BY THERMITE PROCESS[J]. 金属学报, 2015, 51(4): 483-491.
No Suggested Reading articles found!