Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (8): 865-869     DOI:
Research Articles Current Issue | Archive | Adv Search |
ANALYSIS OF DYNAMIC DEVELOPMENT OF SURFACE DEPRESSION IN FULL-PENETRATED WELDPOOL
ChuanSong Wu;
山东大学
Cite this article: 

ChuanSong Wu. ANALYSIS OF DYNAMIC DEVELOPMENT OF SURFACE DEPRESSION IN FULL-PENETRATED WELDPOOL. Acta Metall Sin, 2006, 42(8): 865-869 .

Download:  PDF(595KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To describe the transient transformation process of surface depression of full-penetrated weldpool, a sudden variation of welding process parameters (welding current and welding speed) at some moment when the weldpool has reached quasi-steady state simulates the disturbance during practical welding process. Through employing the developed model for transient behaviors of tungsten-inert-gas arc weldpool, the dynamic transformation process of surface depression of full-penetrated weldpool after a sudden variation of welding process parameters in quasi-steady state is numerically simulated, and basic data are obtained to guide designing weld penetration control system. The welding experiment results show that the predicted surface depression for both top and bottom sides of weldpool is in agreement with the measured one.
Key words:  full-penetrated weldpool      surface depression      dynamic development      
Received:  01 November 2005     
ZTFLH:  TG401  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I8/865

[1]Zhao P C,Wu C S.Int J Join Mater,2003;15:9
[2]Friedman E.Weld J,1978;57(Suppl.):161
[3]Lin M L,Eagar T W.Weld J,1985;64(Suppl.):163
[4]Rokhlin S I,Guu A C.Weld J,1993;72(Suppl.):381
[5]Kovacevic R,Zhang Y M.ASME J Manuf Sci Eng,1997;119:161
[6]Kou S,Wang Y H.Metall Trans,1986;17A:2271
[7]Tsao K C,Wu C S.Weld J,1988:67(Suppl.):70
[8]Wu C S,Cao Z N,Wu L.Acta Metall Sin (Engl Lett),1993;6B:130
[9]Choo R T C,Szekely J,David S A.Metall Trans,1992;23B:371
[10]Chen Y,David S A,Zacharia T,Cremers C J.Numer Heat Transfer,1998;33:599
[11]He X,Fuerschbach P W,DebRoy T.J Phys D:Appl Phys,2003;36:1388
[12]Fan H G,Tsai H L,Na S J.Int J Heat Mass Transfer,2001;44:417
[13]Sun J S,Wu C S.Acta Phys Sin,2002;51:286(孙俊生,武传松.物理学报,2002;51:286)
[14]Wu C S,Yan F J.Modell Simul Mater Sci Eng,2004;12:13
[15]Zacharia T,Eraslan A H,Aidun D K.Weld J,1988;67(Suppl.):53
[16]Zacharia T,Eraslan A H,Aidun D K,David S A.Metall Trans,1989;20B:645
[17]Zhao P C,Wu C S,Zhang Y M.Modell Simul Mater Sci Eng,2004;12:765
[18]Wu C S,Zhao P C,Zhang Y M.Weld J,2004;83(Suppl.):330
[19]Tsai N S,Eagar T W.Metall Trans,1985;16B:841
[1] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[2] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[3] Shujun CHEN, Xuan WANG, Tao YUAN, Xiaoxu LI. Research on Prediction Method of Liquation Cracking Susceptibility to Magnesium Alloy Welds[J]. 金属学报, 2018, 54(12): 1735-1744.
[4] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[5] YE Xin, HUA Xueming, WANG Min, LOU Songnian. MICROSTRUCTURE EVOLUTION OF PARTIALLY MELTED ZONE OF TIG WELDING JOINT OF Ni-BASED INCONEL-718 SUPERALLOY[J]. 金属学报, 2014, 50(8): 1003-1010.
[6] DI Xinjie, XING Xixue, WANG Baosen. NUCLEATION AND COARSENING MECHANISM OF δ PHASE IN INCONEL 625 DEPOSITED METAL[J]. 金属学报, 2014, 50(3): 323-328.
[7] LI Xunping ZHOU Minbo XIA Jianmin MA Xiao ZHANG Xinping. EFFECT OF THE CROSS-INTERACTION ON THE FORMATION AND EVOLUTION OF INTERMETALLIC COMPOUNDS IN Cu(Ni)/Sn-Ag-Cu/Cu(Ni) BGA STRUCTURE SOLDER JOINTS[J]. 金属学报, 2011, 47(5): 611-619.
[8] LU Yudong HE Xiaoqi EN Yunfei WANG Xin ZHUANG Zhiqiang. POLARITY GROWTH OF INTERMETALLIC COMPOUND INDUCED BY ELECTROMIGRATION AT THE INTERFACE BETWEEN EUTECTIC SnPb AND Ni(P) FINISHES[J]. 金属学报, 2009, 45(2): 178-182.
[9] ChuanSong Wu. STUDY ON THE PROCESS MECHANISOM OF HIGH-SPEED ARC WELDING DE-GMAW[J]. 金属学报, 2007, 43(6): 663-667 .
[10] WANG Juan; LI Yajiang; MA Haijun. PRECIPITATE AT DIFFUSION-BONDED INTERFACE BETWEEN Fe3Al ALLOY AND STEEL Q235[J]. 金属学报, 2005, 41(9): 989-993 .
[11] ZHAO Lin; ZHANG Xudong; CHEN Wuzhu. Toughness Of Heat--Affected Zone Of 800 MPa Grade Low Alloy Steel[J]. 金属学报, 2005, 41(4): 392-396 .
[12] GUO Xuming; YANG Chenggang; QIAN Bainian; XU Qiang; ZHANG Hongyan. Effects Of Inoculants Ti And Zr On The Microstructures And Properties Of 2219 Al--Cu Alloy Welds[J]. 金属学报, 2005, 41(4): 397-400 .
[13] ZHAO Yuzhen; LEI Yongping; SHI Yaowu. Modeling of the Effects of Oxygen Content on Flow Patterns in A-Tig Welding[J]. 金属学报, 2004, 40(10): 1085-1092 .
[14] LI Mingyu; AN Rong; WANG Chunqing. Self Excite Reflowing and Interfacial Reaction of SnPb Eutectic Solder on BGA Pad Under Alternate Electromagnetic Radiation[J]. 金属学报, 2004, 40(10): 1093-1098 .
[15] . [J]. 金属学报, 2003, 39(5): 505-509 .
No Suggested Reading articles found!